Skip to main content

Elucidation on the Effect of Operating Temperature to the Transport Properties of Polymeric Membrane Using Molecular Simulation Tool

  • Conference paper
  • First Online:
Modeling, Design and Simulation of Systems (AsiaSim 2017)

Abstract

Existing reports of gas transport properties within polymeric membrane as a direct consequence of operating temperature are in a small number and have arrived in diverging conclusion. The scarcity has been associated to challenges in fabricating defect free membranes and empirical investigations of gas permeation performance at the laboratory scale that are often time consuming and costly. Molecular simulation has been proposed as a feasible alternative of experimentally studied materials to provide insights into gas transport characteristic. Hence, a sequence of molecular modelling procedures has been proposed to simulate polymeric membranes at varying operating temperatures in order to elucidate its effect to gas transport behaviour. The simulation model has been validated with experimental data through satisfactory agreement. Solubility has shown a decrement in value when increased in temperature (an average factor of 1.78), while the opposite has been observed for gas diffusivity (an average factor of 1.32) when the temperature is increased from 298.15 K to 323.15 K. In addition, it is found that permeability decreases by 1.36 times as the temperature is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solarin, S.A., Shahbaz, M.: Natural gas consumption and economic growth: the role of foreign direct investment, capital formation and trade openness in Malaysia. Renew. Sustain. Energy Rev. 42, 835–845 (2015)

    Article  Google Scholar 

  2. Liang, F.Y., Ryvak, M., Sayeed, S., Zhao, N.: The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives. Chem. Cent. J. 6, 1–24 (2012)

    Article  Google Scholar 

  3. Baker, R.W., Lokhandwala, K.: Natural gas processing with membranes: an overview. Ind. Eng. Chem. Res. 47, 2109–2121 (2008)

    Article  Google Scholar 

  4. U.G. Limited: Chemical Composition of Natural Gas (2017)

    Google Scholar 

  5. Lock, S.S.M., Lau, K.K., Ahmad, F., Shariff, A.M.: Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. Int. J. Greenh. Gas Control 36, 114–134 (2015)

    Article  Google Scholar 

  6. Safari, M., Ghanizadeh, A., Montazer-Rahmati, M.M.: Optimization of membrane-based CO2-removal from natural gas using simple models considering both pressure and temperature effects. Int. J. Greenh. Gas Control 3, 3–10 (2009)

    Article  Google Scholar 

  7. Costello, L.M., Koros, W.J.: Temperature dependence of gas sorption and transport properties in polymers: measurement and applications. Ind. Eng. Chem. Res. 31, 2708–2714 (1992)

    Article  Google Scholar 

  8. Koros, W.J., Paul, D.R.: CO2 sorption in poly(ethylene terephthalate) above and below the glass transition. J. Polym. Sci., Part B: Polym. Phys. 16, 1947–1963 (1978)

    Google Scholar 

  9. Costello, L.M., Koros, W.J.: Thermally stable polyimide isomers for membrane-based gas separations at elevated temperatures. J. Polym. Sci., Part B: Polym. Phys. 33, 135–146 (1995)

    Article  Google Scholar 

  10. Merkel, T.C., He, Z., Pinnau, I., Freeman, B.D., Meakin, P., Hill, A.J.: Sorption and transport in Poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) containing nanoscale fumed silica. Macromolecules 36, 8406–8414 (2003)

    Article  Google Scholar 

  11. Gemeda, A.E., De Angelis, M.G., Du, N., Li, N., Guiver, M.D., Sarti, G.C.: Mixed gas sorption in glassy polymeric membranes. III. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1): effect of temperature. J. Membr. Sci. 524, 746–757 (2017)

    Article  Google Scholar 

  12. Stevens, K.A., Smith, Z.P., Gleason, K.L., Galizia, M., Paul, D.R., Freeman, B.D.: Influence of temperature on gas solubility in thermally rearranged (TR) polymers. J. Membr. Sci. 533, 75–83 (2017)

    Article  Google Scholar 

  13. Barnard, A., Li, C.M., Zhou, R., Zhao, Y.: Modelling of the nanoscale. Nanoscale 4, 1042–1043 (2012)

    Article  Google Scholar 

  14. Accelrys Software Inc. (2015)

    Google Scholar 

  15. Freeman, B.D., Pinnau, I.: Polymeric materials for gas separations. In: Polymer Membranes for Gas and Vapor Separation, pp. 1–27. American Chemical Society (1999)

    Google Scholar 

  16. Ahn, J., Chung, W.-J., Pinnau, I., Guiver, M.D.: Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 314, 123–133 (2008)

    Article  Google Scholar 

  17. Lock, S.S.M., Lau, K.K., Mei, I.L.S., Shariff, A.M., Yeong, Y.F.: Cavity energetic sizing algorithm applied in polymeric membranes for gas separation. Proc. Eng. 148, 855–861 (2016)

    Article  Google Scholar 

  18. Hu, N., Fried, J.R.: The atomistic simulation of the gas permeability of poly(organophosphazenes). Part 2. Poly[bis(2,2,2-trifluoroethoxy)phosphazene]. Polymer 46, 4330–4343 (2005)

    Article  Google Scholar 

  19. Liu, Q.L., Huang, Y.: Transport behavior of oxygen and nitrogen through organasilicon-containing polystyrenes by molecular simulation. J. Phys. Chem. B 110, 17375–17382 (2006)

    Article  Google Scholar 

  20. Wang, X.-Y., Raharjo, R.D., Lee, H.J., Lu, Y., Freeman, B.D., Sanchez, I.C.: Molecular simulation and experimental study of substituted polyacetylenes: fractional free volume, cavity size distributions and diffusion coefficients. J. Phys. Chem. B 110, 12666–12672 (2006)

    Article  Google Scholar 

  21. Follain, N., Valleton, J.-M., Lebrun, L., Alexandre, B., Schaetzel, P., Metayer, M., Marais, S.: Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J. Membr. Sci. 349, 195–207 (2010)

    Article  Google Scholar 

  22. Hertäg, L., Bux, H., Caro, J., Chmelik, C., Remsungnen, T., Knauth, M., Fritzsche, S.: Diffusion of CH4 and H2 in ZIF-8. J. Membr. Sci. 377, 36–41 (2011)

    Article  Google Scholar 

  23. Golzar, K., Amjad-Iranagh, S., Amani, M., Modarress, H.: Molecular simulation study of penetrant gas transport properties into the pure and nano sized silica particles filled polysulfone membranes. J. Membr. Sci. 451, 117–134 (2014)

    Article  Google Scholar 

  24. Budhathoki, S., Shah, J.K., Maginn, E.J.: Molecular simulation study of the solubility, diffusivity and permselectivity of pure and binary mixtures of CO2 and CH4 in the ionic liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Ind. Eng. Chem. Res. 54, 8821–8828 (2015)

    Article  Google Scholar 

  25. Nagar, H., Vadthya, P., Prasad, N., Sridhar, S.: Air separation by facilitated transport of oxygen through a Pebax membrane incorporated with a cobalt complex. RSC Adv. 5, 76190–76201 (2015)

    Article  Google Scholar 

  26. Siepmann, J.I., Frenkel, D.: Configurational bias Monte Carlo: a new sampling scheme for flexible chains. Mol. Phys. 75, 59–70 (1992)

    Article  Google Scholar 

  27. Anderson, K.E., Siepmann, J.I.: Molecular simulation approaches to solubility. In: Letcher, T.M. (ed.) Developments and Applications in Solubility, pp. 171–177. R. Soc. Chem., Cambridge (2007)

    Chapter  Google Scholar 

  28. Jiang, Y., Willmore, F.T., Sanders, D., Smith, Z.P., Ribeiro, C.P., Doherty, C.M., Thorton, A., Hill, A.J., Freeman, B.D., Sanchez, I.C.: Cavity size, sorption and transport characteristics of thermally rearranged polymers. Polym. 52, 2244–2254 (2011)

    Article  Google Scholar 

  29. De Angelis, M.G.: Solubility coefficient (S). In: Drioli, E., Giorno, L. (eds.) Encyclopedia of Membranes, pp. 1–5. Springer, Berlin (2015). doi:10.1007/978-3-642-40872-4_631-1

    Google Scholar 

  30. Alexander, S.S.: Polymers for gas separations: the next decade. J. Membr. Sci. 94, 1–65 (1994)

    Article  Google Scholar 

  31. Ghosal, K., Freeman, B.D.: Gas separation using polymer membranes: an overview. Polym. Adv. Technol. 5, 673–697 (1994)

    Article  Google Scholar 

  32. Freeman, B.D., Pinnau, I.: Polymer Membranes for Gas and Vapor Separation. American Chemical Society, Washington, D.C. (1999)

    Book  Google Scholar 

  33. Tait, P.G.: Report on some of the physical properties of fresh water and sea, Report on the scientific results of the voyage of the H.M.S. Challenger during the years 1873–1876. Phys. Chem. 2, 1–76 (1988)

    Google Scholar 

  34. Zoller, P.: Specific volume of polysulfone as a function of temperature and pressure. J. Polym. Sci., Part B: Polym. Phys. 16, 1261–1275 (1978)

    Google Scholar 

  35. Zoller, P.: A study of the pressure-volume-temperature relationships of four related amorphous polymers: polycarbonate, polyarylate, phenoxy, and polysulfone. J. Polym. Sci., Part B: Polym. Phys. 20, 1453–1464 (1982)

    Google Scholar 

  36. Cuthbert, T.R., Wagner, N.J., Paulaitis, M.E., Murgia, G., D’Aguanno, B.: Molecular dynamics simulation of penetrant diffusion in amorphous polypropylene: diffusion mechanisms and simulation size effects. Macromolecules 32, 5017–5028 (1999)

    Article  Google Scholar 

  37. Robeson, L.M.: Polymer membranes for gas separation. Curr. Opin. Solid State Mater. Sci. 4, 549–552 (1999)

    Article  Google Scholar 

  38. McHattie, J.S., Koros, W.J., Paul, D.R.: Gas transport properties of polysulphones: 1. role of symmetry of methyl group placement on bisphenol rings. Polymer 32, 840–850 (1991)

    Article  Google Scholar 

  39. Aitken, C.L., Koros, W.J., Paul, D.R.: Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules 25, 3424–3434 (1992)

    Article  Google Scholar 

  40. Ghosal, K., Chern, R.T., Freeman, B.D., Daly, W.H., Negulescu, I.I.: Effect of basic substituents on gas sorption and permeation in polysulfone. Macromolecules 29, 4360–4369 (1996)

    Article  Google Scholar 

  41. Timmerhaus, K.D.: Advances in Cryogenic Engineering. Springer, US (1995). doi:10.1007/978-1-4613-9847-9

    Book  Google Scholar 

  42. de Oliveira, M.J.: Equilibrium Thermodynamics. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36549-2

    Book  MATH  Google Scholar 

  43. Ohlrogge, K., Stürken, K.: Membranes: separation of organic vapors from gas streams. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2000)

    Google Scholar 

Download references

Acknowledgement

This work is done with the financial support from Universiti Teknologi PETRONAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Keong Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Lock, S.S.M. et al. (2017). Elucidation on the Effect of Operating Temperature to the Transport Properties of Polymeric Membrane Using Molecular Simulation Tool. In: Mohamed Ali, M., Wahid, H., Mohd Subha, N., Sahlan, S., Md. Yunus, M., Wahap, A. (eds) Modeling, Design and Simulation of Systems. AsiaSim 2017. Communications in Computer and Information Science, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-10-6502-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6502-6_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6501-9

  • Online ISBN: 978-981-10-6502-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics