Skip to main content

Linear Active Disturbance Rejection Control for Nanopositioning System by ITAE Optimal Tuning Approach

  • Conference paper
  • First Online:
Proceedings of 2017 Chinese Intelligent Systems Conference (CISC 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 460))

Included in the following conference series:

  • 1169 Accesses

Abstract

Nano-positioning systems with piezoelectric actuators are widely used. However, hysteresis, a common phenomenon in piezoelectric material, makes the control of nano-positioning system be a challenge. A simple and effective approach to deal with hysteresis is necessary. In this paper, both hysteresis and other disturbances are regarded as total disturbance, and linear active disturbance rejection control (LADRC) is utilized. With the help of extended state observer (ESO), total disturbance can be estimated and it can be compensated by control signal in real time. Integral of time-multiplied absolute-value of error (ITAE) optimal bandwidth parameterization approach is utilized to determine the parameters of LADRC. Numerical results are presented to confirm LADRC and its tuning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devasia S, Moheimani SOR. A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol. 2007;15(5):802–23.

    Google Scholar 

  2. Bai C. The state of the art and thinking of nanotechnology in China. Physics. 2002;31(2):65–70.

    Google Scholar 

  3. Contreras JE, Rodriguez EA, Taha-Tijerina J. Nanotechnology applications for electrical transformers—a review. Electr Power Syst Res. 2017;573–84.

    Google Scholar 

  4. Liu H, Jin X, Ding B. Application of nanotechnology in petroleum exploration and development. Pet Explor Dev. 2016;43(6):1107–15.

    Article  Google Scholar 

  5. Tao G, Kokotovic PV. Adaptive control of plants with unknown hystereses. IEEE Trans Autom Control. 1992;39(1):59–68.

    Google Scholar 

  6. Hwang Chih-Lyang. Microprocessor-based fuzzy decentralized control of 2-D piezo-driven systems. IEEE Trans Ind Electron. 2008;55(3):1411–20.

    Article  Google Scholar 

  7. Liu J, Zhou K. Neural networks based modeling and robust control of hysteresis. In: Chinese control conference;2016. p. 3051–56.

    Google Scholar 

  8. Chaoui H. Observer-based adaptive control of piezoelectric actuators without velocity measurement. In: 2016 IEEE 25th international symposium on industrial electronics (ISIE), Santa Clara;2016. p. 399–404.

    Google Scholar 

  9. Jingqing H. Auto-disturbances-rejection controller and its applications. Control Decis. 1998;13(1):19–23.

    Google Scholar 

  10. Geng Z. Superconducting cavity control and model identification based on active disturbance rejection control. IEEE Trans Nuclear Sci. 2017;64(3):951–8.

    Article  Google Scholar 

  11. Chang X, Li Y, Zhang W, et al. Active disturbance rejection control for a flywheel energy storage system. IEEE Trans Ind Electron. 2015;62(2):991–1000.

    Article  Google Scholar 

  12. Li H, Yang Y, Jia P et al. Application of active disturbance rejection control in tracking problem of IPSRU. In: International conference on control & automation (ICCA);2016. p. 616–20.

    Google Scholar 

  13. Goforth Frank J, Qing Zheng, Zhiqiang Gao. A novel practical for rate independent hysteretic systems. ISA Trans. 2012;51(3):477–84.

    Article  Google Scholar 

  14. Zheng Q, Richter H, Gao Z. On active vibration suppression of a piezoelectric beam. In: American control conference;2013. p. 6613–18.

    Google Scholar 

  15. Du B, Wu S. Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor. IEEE Trans Ind Electron. 2016;63(5):3019–27.

    Google Scholar 

  16. Yao X, Wang Q, Liu W, et al. Two-order ADRC control for general industrial plants. Control Eng China. 2002;9(05):59–62.

    Google Scholar 

  17. Graham D, Lathrop RC. The synthesis of ‘Optimum’ transient response: criteria and standard forms. AIEE Trans. 1953;72(5):273–88.

    Google Scholar 

  18. Maurya AK, Bongulwar MR, Patre BM. Tuning of fractional order PID controller for higher order process based on ITAE minimization. In: IEEE India conference;2015. p. 1–5.

    Google Scholar 

  19. Gao Z. Scaling and bandwidth-parameterization based controller tuning. Denver: CO, United States; 2003. p. 4989–96.

    Google Scholar 

  20. Hu H, Mrad RB. On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics. 2003;13(2):85–94.

    Article  Google Scholar 

  21. Shan Y, Leang KK. Design and control for high-speed nanopositioning: serial-kinematic nanopositioners and repetitive control for nanofabrication. IEEE Control Syst. 2013;33(6):86–105.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61403006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wei, W., Shen, X., Shao, Y., Zuo, M. (2018). Linear Active Disturbance Rejection Control for Nanopositioning System by ITAE Optimal Tuning Approach. In: Jia, Y., Du, J., Zhang, W. (eds) Proceedings of 2017 Chinese Intelligent Systems Conference. CISC 2017. Lecture Notes in Electrical Engineering, vol 460. Springer, Singapore. https://doi.org/10.1007/978-981-10-6499-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6499-9_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6498-2

  • Online ISBN: 978-981-10-6499-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics