Skip to main content

Adaptive Maximum a Posteriori Filtering for Relative Attitude and Position Estimation

  • Conference paper
  • First Online:
  • 1160 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 460))

Abstract

In the presented algorithm, the Gaussian maximum a posteriori (MAP) filter and the traditional extended Kalman filter (EKF) are implemented in parallel to obtain the adaptive ability. One of the elemental filters, the EKF yields high precision in the scenario with low process noise, whereas the other elemental filter, the Gaussian MAP filter is adopted to utilize the measurement maximally in the presence of high process noise. The state estimates of the parallel filters are combined automatically based on the confidence for the underlying situation, such that the presented algorithm can adapt to different operation scenarios. The presented algorithm can provide precise relative attitude and position knowledge between two spacecrafts. It is applicable for many space missions, such as spacecraft formation flying, autonomous rendezvous docking and failed satellite removal. This is the first paper that presents the adaptive MAP estimator based on parallel multiple filters for spacecraft relative navigation.

This study was supported in part by China Natural Science Foundation (61573059) and Beijing Natural Science Foundation (4162070).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang R, Liu J, Xiong Z, Zeng Q. Double-layer fusion algorithm for EGI-based system. Aircraft Eng Aerosp Technol. 2013;85(4):258–66.

    Article  Google Scholar 

  2. Zhou G, Pelletier M, Kirubarajan T, Quan T. Statically fused converted position and doppler measurement Kalman filters. IEEE Trans Aerosp Electron Syst. 2014;50(1):300–18.

    Article  Google Scholar 

  3. Panferov AI, Ponomarev V. Algorithms for estimation of parameters of micromechanical gyros. Aircraft Eng Aerosp Technol. 2015;87(6):557–62.

    Article  Google Scholar 

  4. Kay SM. Fundamentals of statistical signal processing: estimation theory. Englewood Cliffs, NJ: Pientice-Hall; 1993.

    MATH  Google Scholar 

  5. Julier S, Uhlmann J, Durrant-Whyte HF. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control. 2000;45(3):477–82.

    Article  MathSciNet  MATH  Google Scholar 

  6. Arasaratnam I, Haykin S. Cubature Kalman filter. IEEE Trans Autom Control. 2009;54(6):1254–69.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bell B, Cathey F. The iterated Kalman filter update as a Gauss-Newton method. IEEE Trans Autom Control. 1993;38(2):294–7.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lorentzen RJ, Nevdal G. An iterative ensemble Kalman filter. IEEE Trans Autom Control. 2011;56(8):1990–5.

    Article  MathSciNet  MATH  Google Scholar 

  9. Garcia-Fernandez AF, Svensson L. Gaussian MAP filtering using Kalman optimization. IEEE Trans Autom Control. 2015;60(5):1336–49.

    Article  MathSciNet  MATH  Google Scholar 

  10. Xiong K, Wei CL, Liu LD. Multiple-model adaptive estimation for space surveillance with measurement uncertainty. Optim Control Appl Methods. 2016;37:404–23.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kwon SJ. Robust Kalman filtering with perturbation estimation process for uncertain system. IEE Proc Control Theory Appl. 2006;153(5):600–6.

    Google Scholar 

  12. Kim SG, Crassidis JL, Cheng Y, Fosbury AM. Kalman filtering for relative spacecraft attitude and position estimation. J Guid Control Dyn. 2007;30(1):133–43.

    Article  Google Scholar 

  13. Zhang L, Yang H, Zhang S, Cai H. Kalman filtering for relative spacecraft attitude and position estimation: a revisit. J Guid Control Dyn. 2014;37(5):1706–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaoYu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Xiong, K., Zhang, H. (2018). Adaptive Maximum a Posteriori Filtering for Relative Attitude and Position Estimation. In: Jia, Y., Du, J., Zhang, W. (eds) Proceedings of 2017 Chinese Intelligent Systems Conference. CISC 2017. Lecture Notes in Electrical Engineering, vol 460. Springer, Singapore. https://doi.org/10.1007/978-981-10-6499-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6499-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6498-2

  • Online ISBN: 978-981-10-6499-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics