Skip to main content

Population Genetics of Corals in Japan

  • Chapter
  • First Online:
Coral Reef Studies of Japan

Part of the book series: Coral Reefs of the World ((CORW,volume 13))

Abstract

Understanding how coral populations are established and maintained is important to predict how coral reef ecosystems will respond to future conditions. Population genetic analyses using DNA markers have provided useful information on how coral populations are maintained. In this chapter, I briefly introduce the history of using DNA markers in the population genetic analyses of corals. I also explain the merit of population genetic analyses to delineate the species boundaries of corals and infer how reproductive characteristics contribute to connectivity among populations. Based on previous studies on population genetic analyses of corals, I also discuss how population genetic analyses have contributed toward understanding the patterns of connectivity among coral populations and geographic variations in genetic diversity, primarily focusing on examples along the Ryukyu Archipelago. Finally, I propose future directions for the population genetics of corals in Japan, taking several aspects into consideration, including methodological information, such as seascape genetics and the development of novel molecular markers for utilizing next-generation sequencing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe M, Watanabe T, Hayakawa H, Hidaka M (2008) Breeding experiments of the hermatypic coral Galaxea fascicularis: partial reproductive isolation between colonies of different nematocyst types, and enhancement of fertilization success by the presence of parental colonies. Fish Sci 74:1342–1344

    Article  CAS  Google Scholar 

  • Adjeroud M, Tsuchiya M (1999) Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, Southern Japan. Mar Biol 134:753–760

    Article  Google Scholar 

  • Alberto F, Raimondi PT, Reed DC, Watson JR, Siegel DA, Mitarai S, Coelho N, Serrão EA (2011) Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol Ecol 20:2543–2554

    Article  Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  Google Scholar 

  • Aranceta-Garza F, Balart EF, Reyes-Bonilla H, Cruz-Hernández P (2012) Effect of tropical storms on sexual and asexual reproduction in coral Pocillopora verrucosa subpopulations in the Gulf of California. Coral Reefs 31:1157–1167

    Article  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  CAS  Google Scholar 

  • Ayre DJ, Dufty SL (1994) Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48:1183–1201

    Article  Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    Article  CAS  Google Scholar 

  • Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278

    Article  Google Scholar 

  • Ayre DJ, Hughes TP, Standish RJ (1997) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175–187

    Article  Google Scholar 

  • Baums IB, Hughes CR, Hellberg MH (2005) Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar Ecol Prog Ser 288:115–127

    Article  CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2006) Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76:503–519

    Article  Google Scholar 

  • Baums IB, Boulay JN, Polato NR, Hellberg ME (2012) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21:5418–5433

    Article  Google Scholar 

  • Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 13:827–836

    Article  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    CAS  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    Article  CAS  Google Scholar 

  • Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 5:e10871

    Article  CAS  Google Scholar 

  • Chen C, Dai C-F, Plathong S, Chiou C-Y, Chen CA (2008) The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. Mol Phylogenet Evol 46:19–33

    Article  CAS  Google Scholar 

  • Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  Google Scholar 

  • Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    CAS  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB (2000) Connectivity of marine populations: open or closed? Science 287:857–859

    Article  CAS  Google Scholar 

  • Figueiredo J, Baird AH, Harii S, Connolly SR (2014) Increased local retention of reef coral larvae as a result of ocean warming. Nat Clim Chang 4:498–502

    Article  Google Scholar 

  • Flot J-F, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401:80–87

    Article  CAS  Google Scholar 

  • Flot J-F, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tiller S (2008) Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27:789–794

    Article  Google Scholar 

  • Fukami H, Omori M, Hatta M (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696

    Article  CAS  Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626

    Article  CAS  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  Google Scholar 

  • Gorospe KD, Karl SA (2013) Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis. Mol Ecol 22:3721–3736

    Article  Google Scholar 

  • Gorospe KD, Donahue MJ, Karl SA (2015) The importance of sampling design: spatial patterns and clonality in estimating the genetic diversity of coral reefs. Mar Biol 162:917–928

    Article  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs: ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hayashibara T, Shimoike K (2002) Cryptic species of Acropora digitifera. Coral Reefs 21:224–225

    Google Scholar 

  • Hedgecock D, Barber PH, Edmands SE (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79

    Article  Google Scholar 

  • Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473

    Article  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  CAS  Google Scholar 

  • Heyward AJ, Babcock RC (1986) Self- and cross-fertilization in scleractinian corals. Mar Biol 90:191–195

    Article  Google Scholar 

  • Howells EJ, Willis BL, Bay LK, van Oppen MJH (2013) Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef. Mol Ecol 22:3693–3708

    Article  CAS  Google Scholar 

  • Isomura N, Iwao K, Morita M, Fukami H (2016) Spawning and fertility of F1 hybrids of the coral genus Acropora in the Indo-Pacific. Coral Reefs 35:851–855

    Article  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    CAS  Google Scholar 

  • Kitanobo S, Isomura N, Fukami H, Iwao K, Morita M (2016) The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol Lett 12:20160511

    Google Scholar 

  • Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  Google Scholar 

  • Lundgren P, Vera JC, Peplow L, Manel S, van Oppen MJH (2013) Genotype – environment correlations in corals from the Great Barrier Reef. BMC Genet 14:9

    Article  CAS  Google Scholar 

  • Maier E, Tollrian R, Nürnberger B (2009) Fine-scale analysis of genetic structure in the brooding coral Seriatopora hystrix from the Red Sea. Coral Reefs 28:751–756

    Article  Google Scholar 

  • Manel S, Gaggioti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Article  Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough MJ, Swearer S (2010) Phenotype–environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140

    Article  CAS  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Miller KJ, Ayre DJ (2008a) Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Conserv Biol 22:1245–1254

    Article  Google Scholar 

  • Miller KJ, Ayre DJ (2008b) Population structure is not a simple function of reproductive mode and larval type: insights from tropical corals. J Anim Ecol 77:713–724

    Article  Google Scholar 

  • Muko S, Arakaki S, Tamai R, Sakai K (2014) An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix. Ecol Model 277:68–76

    Article  Google Scholar 

  • Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2009a) Novel and cross-species amplifiable microsatellite markers in two Acropora species. Plankton Benthos Res 4:38–41

    Article  Google Scholar 

  • Nakajima Y, Nishikawa A, Isomura N, Iguchi A, Sakai K (2009b) Genetic connectivity in the broadcast-spawning coral Acropora digitifera analyzed by microsatellite markers on the Sekisei Reef, southwestern Japan. Zool Sci 26:209–215

    Article  CAS  Google Scholar 

  • Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2010) Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations. PLoS One 5:e11149

    Article  CAS  Google Scholar 

  • Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2012a) Regional genetic differentiation among northern high-latitude island populations of a broadcast-spawning coral. Coral Reefs 31:1125–1133

    Article  Google Scholar 

  • Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2012b) The population genetic approach delineates the species boundary of reproductively isolated corymbose acroporid corals. Mol Phylogenet Evol 63:527–531

    Article  Google Scholar 

  • Nakajima Y, Shinzato C, Satoh N, Mitarai S (2015) Novel polymorphic microsatellite markers reveal genetic differentiation between two sympatric types of Galaxea fascicularis. PLoS One 10:e0130176

    Article  CAS  Google Scholar 

  • Nakajima Y, Zayasu Y, Shinzato C, Satoh N, Mitarai S (2016) Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands, Japan. Ecol Evol 6:1457–1469

    Article  Google Scholar 

  • Nakajima Y, Nishikawa A, Iguchi A, Nagata T, Uyeno D, Sakai K, Mitarai S (2017) Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago. Coral Reefs 36:415–426

    Google Scholar 

  • Nishikawa A, Sakai K (2003) Genetic variation and gene flow of broadcast spawning and planula brooding coral, Goniastrea aspera (Scleractinia) in the Ryukyu Archipelago, southern Japan. Zool Sci 20:1031–1038

    Article  CAS  Google Scholar 

  • Nishikawa A, Sakai K (2005a) Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool Sci 22:391–399

    Article  Google Scholar 

  • Nishikawa A, Sakai K (2005b) Genetic connectivity of the scleractinian coral Goniastrea aspera around the Okinawa Islands. Coral Reefs 24:318–323

    Article  Google Scholar 

  • Nishikawa A, Katoh M, Sakai K (2003) Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals (Scleractinia). Mar Ecol Prog Ser 256:87–97

    Article  CAS  Google Scholar 

  • Noreen AME, Harrison PL, van Oppen MJH (2009) Genetic diversity and connectivity in a brooding reef coral at the limit of its distribution. P R Soc B 276:3927–3935

    Article  Google Scholar 

  • Noreen AME, van Oppen MJH, Harrison PL (2013) Genetic diversity and differentiation among high-latitude broadcast-spawning coral populations disjunct from the core range. Mar Ecol Prog Ser 491:101–109

    Article  Google Scholar 

  • Ohki S, Kowalski RK, Kitanobo S, Morita M (2015) Changes in spawning time led to the speciation of the broadcast spawning corals Acropora digitifera and the cryptic species Acropora sp. 1 with similar gamete recognition systems. Coral Reefs 34:1189–1198

    Article  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187

    Article  CAS  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pettay DT, LaJeunesse TC (2013) Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS One 8:e79208

    Article  CAS  Google Scholar 

  • Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325

    Article  CAS  Google Scholar 

  • Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Richards ZT, van Oppen MJH (2012) Rarity and genetic diversity in Indo–Pacific Acropora corals. Ecol Evol 2:1867–1888

    Article  Google Scholar 

  • Richards ZT, Miller DJ, Wallace CC (2013) Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation. Mol Phylogenet Evol 69:837–851

    Article  CAS  Google Scholar 

  • Ridgway T, Riginos C, Davis J, Hoegh-Guldberg O (2008) Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar Ecol Prog Ser 354:161–168

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol Ecol 11:1177–1189

    Article  CAS  Google Scholar 

  • Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AME, Andreakis N (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32:161–172

    Article  Google Scholar 

  • Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linnean Soc 170:1–33

    Article  Google Scholar 

  • Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377

    Article  Google Scholar 

  • Selkoe KA, Watson JR, White C, Horin TB, Iacchei M, Mitarai S, Siegel DA, Gaines SD, Toonen RJ (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726

    Article  Google Scholar 

  • Selkoe KA, Gaggiotti OE, Treml EA, Wren JL, Donovan MK, Toonen RJ, Hawai‘i Reef Connectivity Consortium (2016) The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages. P R Soc B 283:1829

    Article  CAS  Google Scholar 

  • Shinzato C, Yasuoka Y, Mungpakdee S, Arakaki N, Fujie M, Nakajima Y, Satoh N (2014) Development of novel, cross-species microsatellite markers for Acropora corals using next-generation sequencing technology. Front Mar Sci 1:11

    Article  Google Scholar 

  • Shinzato C, Mungpakdee S, Arakaki N, Satoh N (2015) Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago. Sci Rep 5:18211

    Article  CAS  Google Scholar 

  • Suzuki G, Keshavmurthy S, Hayashibara T, Wallace CC, Shirayama Y, Chen CA, Fukami H (2016) Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35:1419–1432

    Article  Google Scholar 

  • Takabayashi M, Carter D, Lopez J, Hoegh-Guldberg O (2003) Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 22:17–22

    Google Scholar 

  • Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784

    Article  CAS  Google Scholar 

  • van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. P R Soc B 266:179–183

    Article  Google Scholar 

  • van Oppen MJH, McDonald BJ, Willis BL, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting or morphological convergence? Mol Biol Evol 18:1315–1329

    Article  Google Scholar 

  • van Oppen MJH, Underwood JN, Muirhead AN, Peplow L (2007) Ten microsatellite loci for the reef-building coral Acropora millepora (Cnidaria, Scleractinia) from the Great Barrier Reef, Australia. Mol Ecol Notes 7:436–438

    Article  CAS  Google Scholar 

  • van Oppen MJH, Lutz A, De'ath G, Peplow L, Kininmonth S (2008) Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. PLoS One 3:e3401

    Article  CAS  Google Scholar 

  • van Oppen MJH, Peplow LM, Kininmonth S, Berkelmans R (2011) Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the Great Barrier Reef. Mol Ecol 20:4899–4914

    Article  Google Scholar 

  • Villanueva RD (2015) Cryptic speciation in the stony octocoral Heliopora coerulea: temporal reproductive isolation between two growth forms. Mar Biodivers 46:503–507

    Article  Google Scholar 

  • Warner PA, van Oppen MJH, Willis BL (2015) Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol Ecol 24:2993–3008

    Article  Google Scholar 

  • Watanabe T, Nishida M, Watanabe K, Wewengkang DS, Hidaka M (2005) Polymorphism in the nucleotide sequence of a mitochondrial intergenic region in the scleractinian coral Galaxea fascicularis. Mar Biotechnol 7:33–39

    Article  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  Google Scholar 

  • Yamano H (2008) Distribution of coral reefs in Japan. Bull Coast Oceanogr 46:3–9

    Google Scholar 

  • Yasuda N, Nagai S, Lian C, Hamaguchi M, Hayashibara T, Nadaoka K (2012) Identification and characterization of microsatellite loci in the blue coral Heliopora coerulea (Alcynonaria: Coenothecalia). Conserv Genet 9:1011–1013

    Article  CAS  Google Scholar 

  • Yasuda N, Taquet C, Nagai S, Fortes M, Fan TY, Phongsuwan N, Nadaoka K (2014) Genetic structure and cryptic speciation in the threatened reef-building coral Heliopora coerulea along Kuroshio Current. Bull Mar Sci 90:233–255

    Article  Google Scholar 

  • Yasuda N, Taquet C, Nagai S, Fortes M, Fan TY, Harii S, Yoshida T, Sito Y, Nadaoka K (2015) Genetic diversity, paraphyly and incomplete lineage sorting of mtDNA, ITS2 and microsatellite flanking region in closely related Heliopora species (Octocorallia). Mol Phylogenet Evol 93:161–171

    Article  Google Scholar 

  • Zayasu Y, Nakajima Y, Sakai K, Suzuki G, Satoh N, Shinzato C (2016) Unexpectedly complex gradation of coral population structure in the Nansei Islands, Japan. Ecol Evol 6:5491–5505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2018). Population Genetics of Corals in Japan. In: Iguchi, A., Hongo, C. (eds) Coral Reef Studies of Japan. Coral Reefs of the World, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-10-6473-9_8

Download citation

Publish with us

Policies and ethics