Advertisement

Population Genetics of Corals in Japan

Chapter
Part of the Coral Reefs of the World book series (CORW, volume 13)

Abstract

Understanding how coral populations are established and maintained is important to predict how coral reef ecosystems will respond to future conditions. Population genetic analyses using DNA markers have provided useful information on how coral populations are maintained. In this chapter, I briefly introduce the history of using DNA markers in the population genetic analyses of corals. I also explain the merit of population genetic analyses to delineate the species boundaries of corals and infer how reproductive characteristics contribute to connectivity among populations. Based on previous studies on population genetic analyses of corals, I also discuss how population genetic analyses have contributed toward understanding the patterns of connectivity among coral populations and geographic variations in genetic diversity, primarily focusing on examples along the Ryukyu Archipelago. Finally, I propose future directions for the population genetics of corals in Japan, taking several aspects into consideration, including methodological information, such as seascape genetics and the development of novel molecular markers for utilizing next-generation sequencing technologies.

Keywords

Coral recovery Clonality DNA marker Genetic diversity Genetic structure Population connectivity Species diversity 

References

  1. Abe M, Watanabe T, Hayakawa H, Hidaka M (2008) Breeding experiments of the hermatypic coral Galaxea fascicularis: partial reproductive isolation between colonies of different nematocyst types, and enhancement of fertilization success by the presence of parental colonies. Fish Sci 74:1342–1344CrossRefGoogle Scholar
  2. Adjeroud M, Tsuchiya M (1999) Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, Southern Japan. Mar Biol 134:753–760CrossRefGoogle Scholar
  3. Alberto F, Raimondi PT, Reed DC, Watson JR, Siegel DA, Mitarai S, Coelho N, Serrão EA (2011) Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol Ecol 20:2543–2554CrossRefGoogle Scholar
  4. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CrossRefGoogle Scholar
  5. Aranceta-Garza F, Balart EF, Reyes-Bonilla H, Cruz-Hernández P (2012) Effect of tropical storms on sexual and asexual reproduction in coral Pocillopora verrucosa subpopulations in the Gulf of California. Coral Reefs 31:1157–1167CrossRefGoogle Scholar
  6. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139CrossRefGoogle Scholar
  7. Ayre DJ, Dufty SL (1994) Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48:1183–1201CrossRefGoogle Scholar
  8. Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605CrossRefGoogle Scholar
  9. Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278CrossRefGoogle Scholar
  10. Ayre DJ, Hughes TP, Standish RJ (1997) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175–187CrossRefGoogle Scholar
  11. Baums IB, Hughes CR, Hellberg MH (2005) Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar Ecol Prog Ser 288:115–127CrossRefGoogle Scholar
  12. Baums IB, Miller MW, Hellberg ME (2006) Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76:503–519CrossRefGoogle Scholar
  13. Baums IB, Boulay JN, Polato NR, Hellberg ME (2012) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21:5418–5433CrossRefGoogle Scholar
  14. Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 13:827–836CrossRefGoogle Scholar
  15. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773Google Scholar
  16. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568CrossRefGoogle Scholar
  17. Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 5:e10871CrossRefGoogle Scholar
  18. Chen C, Dai C-F, Plathong S, Chiou C-Y, Chen CA (2008) The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. Mol Phylogenet Evol 46:19–33CrossRefGoogle Scholar
  19. Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374Google Scholar
  20. Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000Google Scholar
  21. Cowen RK, Lwiza KMM, Sponaugle S, Paris CB (2000) Connectivity of marine populations: open or closed? Science 287:857–859CrossRefGoogle Scholar
  22. Figueiredo J, Baird AH, Harii S, Connolly SR (2014) Increased local retention of reef coral larvae as a result of ocean warming. Nat Clim Chang 4:498–502CrossRefGoogle Scholar
  23. Flot J-F, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401:80–87CrossRefGoogle Scholar
  24. Flot J-F, Licuanan WY, Nakano Y, Payri C, Cruaud C, Tiller S (2008) Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27:789–794CrossRefGoogle Scholar
  25. Fukami H, Omori M, Hatta M (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696CrossRefGoogle Scholar
  26. Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626CrossRefGoogle Scholar
  27. Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651CrossRefGoogle Scholar
  28. Gorospe KD, Karl SA (2013) Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis. Mol Ecol 22:3721–3736CrossRefGoogle Scholar
  29. Gorospe KD, Donahue MJ, Karl SA (2015) The importance of sampling design: spatial patterns and clonality in estimating the genetic diversity of coral reefs. Mar Biol 162:917–928CrossRefGoogle Scholar
  30. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs: ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 133–207Google Scholar
  31. Hayashibara T, Shimoike K (2002) Cryptic species of Acropora digitifera. Coral Reefs 21:224–225Google Scholar
  32. Hedgecock D, Barber PH, Edmands SE (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79CrossRefGoogle Scholar
  33. Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473CrossRefGoogle Scholar
  34. Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760CrossRefGoogle Scholar
  35. Heyward AJ, Babcock RC (1986) Self- and cross-fertilization in scleractinian corals. Mar Biol 90:191–195CrossRefGoogle Scholar
  36. Howells EJ, Willis BL, Bay LK, van Oppen MJH (2013) Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef. Mol Ecol 22:3693–3708CrossRefGoogle Scholar
  37. Isomura N, Iwao K, Morita M, Fukami H (2016) Spawning and fertility of F1 hybrids of the coral genus Acropora in the Indo-Pacific. Coral Reefs 35:851–855CrossRefGoogle Scholar
  38. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefGoogle Scholar
  39. Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576Google Scholar
  40. Kitanobo S, Isomura N, Fukami H, Iwao K, Morita M (2016) The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol Lett 12:20160511Google Scholar
  41. Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  42. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051CrossRefGoogle Scholar
  43. Lundgren P, Vera JC, Peplow L, Manel S, van Oppen MJH (2013) Genotype – environment correlations in corals from the Great Barrier Reef. BMC Genet 14:9CrossRefGoogle Scholar
  44. Maier E, Tollrian R, Nürnberger B (2009) Fine-scale analysis of genetic structure in the brooding coral Seriatopora hystrix from the Red Sea. Coral Reefs 28:751–756CrossRefGoogle Scholar
  45. Manel S, Gaggioti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142CrossRefGoogle Scholar
  46. Marshall DJ, Monro K, Bode M, Keough MJ, Swearer S (2010) Phenotype–environment mismatches reduce connectivity in the sea. Ecol Lett 13:128–140CrossRefGoogle Scholar
  47. Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  48. Miller KJ, Ayre DJ (2008a) Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Conserv Biol 22:1245–1254CrossRefGoogle Scholar
  49. Miller KJ, Ayre DJ (2008b) Population structure is not a simple function of reproductive mode and larval type: insights from tropical corals. J Anim Ecol 77:713–724CrossRefGoogle Scholar
  50. Muko S, Arakaki S, Tamai R, Sakai K (2014) An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix. Ecol Model 277:68–76CrossRefGoogle Scholar
  51. Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2009a) Novel and cross-species amplifiable microsatellite markers in two Acropora species. Plankton Benthos Res 4:38–41CrossRefGoogle Scholar
  52. Nakajima Y, Nishikawa A, Isomura N, Iguchi A, Sakai K (2009b) Genetic connectivity in the broadcast-spawning coral Acropora digitifera analyzed by microsatellite markers on the Sekisei Reef, southwestern Japan. Zool Sci 26:209–215CrossRefGoogle Scholar
  53. Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2010) Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations. PLoS One 5:e11149CrossRefGoogle Scholar
  54. Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2012a) Regional genetic differentiation among northern high-latitude island populations of a broadcast-spawning coral. Coral Reefs 31:1125–1133CrossRefGoogle Scholar
  55. Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2012b) The population genetic approach delineates the species boundary of reproductively isolated corymbose acroporid corals. Mol Phylogenet Evol 63:527–531CrossRefGoogle Scholar
  56. Nakajima Y, Shinzato C, Satoh N, Mitarai S (2015) Novel polymorphic microsatellite markers reveal genetic differentiation between two sympatric types of Galaxea fascicularis. PLoS One 10:e0130176CrossRefGoogle Scholar
  57. Nakajima Y, Zayasu Y, Shinzato C, Satoh N, Mitarai S (2016) Genetic differentiation and connectivity of morphological types of the broadcast-spawning coral Galaxea fascicularis in the Nansei Islands, Japan. Ecol Evol 6:1457–1469CrossRefGoogle Scholar
  58. Nakajima Y, Nishikawa A, Iguchi A, Nagata T, Uyeno D, Sakai K, Mitarai S (2017) Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago. Coral Reefs 36:415–426Google Scholar
  59. Nishikawa A, Sakai K (2003) Genetic variation and gene flow of broadcast spawning and planula brooding coral, Goniastrea aspera (Scleractinia) in the Ryukyu Archipelago, southern Japan. Zool Sci 20:1031–1038CrossRefGoogle Scholar
  60. Nishikawa A, Sakai K (2005a) Settlement-competency period of planulae and genetic differentiation of the scleractinian coral Acropora digitifera. Zool Sci 22:391–399CrossRefGoogle Scholar
  61. Nishikawa A, Sakai K (2005b) Genetic connectivity of the scleractinian coral Goniastrea aspera around the Okinawa Islands. Coral Reefs 24:318–323CrossRefGoogle Scholar
  62. Nishikawa A, Katoh M, Sakai K (2003) Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals (Scleractinia). Mar Ecol Prog Ser 256:87–97CrossRefGoogle Scholar
  63. Noreen AME, Harrison PL, van Oppen MJH (2009) Genetic diversity and connectivity in a brooding reef coral at the limit of its distribution. P R Soc B 276:3927–3935CrossRefGoogle Scholar
  64. Noreen AME, van Oppen MJH, Harrison PL (2013) Genetic diversity and differentiation among high-latitude broadcast-spawning coral populations disjunct from the core range. Mar Ecol Prog Ser 491:101–109CrossRefGoogle Scholar
  65. Ohki S, Kowalski RK, Kitanobo S, Morita M (2015) Changes in spawning time led to the speciation of the broadcast spawning corals Acropora digitifera and the cryptic species Acropora sp. 1 with similar gamete recognition systems. Coral Reefs 34:1189–1198CrossRefGoogle Scholar
  66. Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187CrossRefGoogle Scholar
  67. Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158CrossRefGoogle Scholar
  68. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  69. Pettay DT, LaJeunesse TC (2013) Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS One 8:e79208CrossRefGoogle Scholar
  70. Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325CrossRefGoogle Scholar
  71. Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, LaJeunesse TC (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608CrossRefGoogle Scholar
  72. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  73. Richards ZT, van Oppen MJH (2012) Rarity and genetic diversity in Indo–Pacific Acropora corals. Ecol Evol 2:1867–1888CrossRefGoogle Scholar
  74. Richards ZT, Miller DJ, Wallace CC (2013) Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation. Mol Phylogenet Evol 69:837–851CrossRefGoogle Scholar
  75. Ridgway T, Riginos C, Davis J, Hoegh-Guldberg O (2008) Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Mar Ecol Prog Ser 354:161–168CrossRefGoogle Scholar
  76. Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol Ecol 11:1177–1189CrossRefGoogle Scholar
  77. Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AME, Andreakis N (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32:161–172CrossRefGoogle Scholar
  78. Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linnean Soc 170:1–33CrossRefGoogle Scholar
  79. Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377CrossRefGoogle Scholar
  80. Selkoe KA, Watson JR, White C, Horin TB, Iacchei M, Mitarai S, Siegel DA, Gaines SD, Toonen RJ (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708–3726CrossRefGoogle Scholar
  81. Selkoe KA, Gaggiotti OE, Treml EA, Wren JL, Donovan MK, Toonen RJ, Hawai‘i Reef Connectivity Consortium (2016) The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages. P R Soc B 283:1829CrossRefGoogle Scholar
  82. Shinzato C, Yasuoka Y, Mungpakdee S, Arakaki N, Fujie M, Nakajima Y, Satoh N (2014) Development of novel, cross-species microsatellite markers for Acropora corals using next-generation sequencing technology. Front Mar Sci 1:11CrossRefGoogle Scholar
  83. Shinzato C, Mungpakdee S, Arakaki N, Satoh N (2015) Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago. Sci Rep 5:18211CrossRefGoogle Scholar
  84. Suzuki G, Keshavmurthy S, Hayashibara T, Wallace CC, Shirayama Y, Chen CA, Fukami H (2016) Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35:1419–1432CrossRefGoogle Scholar
  85. Takabayashi M, Carter D, Lopez J, Hoegh-Guldberg O (2003) Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 22:17–22Google Scholar
  86. Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784CrossRefGoogle Scholar
  87. van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. P R Soc B 266:179–183CrossRefGoogle Scholar
  88. van Oppen MJH, McDonald BJ, Willis BL, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting or morphological convergence? Mol Biol Evol 18:1315–1329CrossRefGoogle Scholar
  89. van Oppen MJH, Underwood JN, Muirhead AN, Peplow L (2007) Ten microsatellite loci for the reef-building coral Acropora millepora (Cnidaria, Scleractinia) from the Great Barrier Reef, Australia. Mol Ecol Notes 7:436–438CrossRefGoogle Scholar
  90. van Oppen MJH, Lutz A, De'ath G, Peplow L, Kininmonth S (2008) Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. PLoS One 3:e3401CrossRefGoogle Scholar
  91. van Oppen MJH, Peplow LM, Kininmonth S, Berkelmans R (2011) Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the Great Barrier Reef. Mol Ecol 20:4899–4914CrossRefGoogle Scholar
  92. Villanueva RD (2015) Cryptic speciation in the stony octocoral Heliopora coerulea: temporal reproductive isolation between two growth forms. Mar Biodivers 46:503–507CrossRefGoogle Scholar
  93. Warner PA, van Oppen MJH, Willis BL (2015) Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol Ecol 24:2993–3008CrossRefGoogle Scholar
  94. Watanabe T, Nishida M, Watanabe K, Wewengkang DS, Hidaka M (2005) Polymorphism in the nucleotide sequence of a mitochondrial intergenic region in the scleractinian coral Galaxea fascicularis. Mar Biotechnol 7:33–39CrossRefGoogle Scholar
  95. Wright S (1943) Isolation by distance. Genetics 28:114–138Google Scholar
  96. Yamano H (2008) Distribution of coral reefs in Japan. Bull Coast Oceanogr 46:3–9Google Scholar
  97. Yasuda N, Nagai S, Lian C, Hamaguchi M, Hayashibara T, Nadaoka K (2012) Identification and characterization of microsatellite loci in the blue coral Heliopora coerulea (Alcynonaria: Coenothecalia). Conserv Genet 9:1011–1013CrossRefGoogle Scholar
  98. Yasuda N, Taquet C, Nagai S, Fortes M, Fan TY, Phongsuwan N, Nadaoka K (2014) Genetic structure and cryptic speciation in the threatened reef-building coral Heliopora coerulea along Kuroshio Current. Bull Mar Sci 90:233–255CrossRefGoogle Scholar
  99. Yasuda N, Taquet C, Nagai S, Fortes M, Fan TY, Harii S, Yoshida T, Sito Y, Nadaoka K (2015) Genetic diversity, paraphyly and incomplete lineage sorting of mtDNA, ITS2 and microsatellite flanking region in closely related Heliopora species (Octocorallia). Mol Phylogenet Evol 93:161–171CrossRefGoogle Scholar
  100. Zayasu Y, Nakajima Y, Sakai K, Suzuki G, Satoh N, Shinzato C (2016) Unexpectedly complex gradation of coral population structure in the Nansei Islands, Japan. Ecol Evol 6:5491–5505CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan

Personalised recommendations