Frontiers of Coral-Based Sclerochronological Studies in Japan

Chapter
Part of the Coral Reefs of the World book series (CORW, volume 13)

Abstract

Corals deposit calcium carbonate (CaCO3 : aragonite ) skeletons with paired high- and low-density bands that reflect past sea surface conditions during their growth. In addition, the elemental and isotopic compositions of a coral skeleton are affected by environmental factors during deposition, such as sea surface temperature (SST), sea surface salinity (SSS), nutrients, turbidity, pH, and dissolved inorganic carbon (DIC). Therefore, physical and chemical analyses of coral skeletons can provide a record of paleoclimatic and oceanographic changes and coral physiological responses. Because the southwestern part of Japan is at the northern habitable limit of reef-building corals, Japanese corals have distinct biological characteristics, and the area’s climatic and oceanographic setting is unique (e.g., East Asian Monsoon, Pacific Decadal Oscillation, and Kuroshio Current). Studying corals in marginal regions can facilitate understanding of the mechanisms of climatic and oceanographic changes and coral physiological responses and contribute to predicting future changes. This chapter will introduce the use of physical and chemical analyses of coral skeletons as chronological indices, highlight previous coral studies in Japan, and propose future directions for paleoenvironmental research using corals.

Keywords

Coral growth Trace elements Isotopic composition Quaternary EAM PDO Kuroshio Current 

Notes

Acknowledgments

We are grateful to Tsuyoshi Watanabe at Hokkaido University for providing photos of coral slabs. We also thank two editors of Akira Iguchi and Chuki Hongo, and three referees of Jens Zinke, Ryuji Asami, and Tsuyoshi Watanabe for constructive reviews that contributed to a substantially improved final manuscript. This chapter is supported by Kurita Water and Environment Foundation Grant (15B037) to KS.

References

  1. Abram N, Webster J, Davies P, Dullo W (2001) Biological response of coral reefs to sea surface temperature variation: evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20(3):221–234CrossRefGoogle Scholar
  2. Adachi H, Abe O (2003) Air drill for submerged massive coral drilling. Mar Technol Soc J 37(2):31–36CrossRefGoogle Scholar
  3. AIMS (2013) Australian Institute of Marine Science (AIMS) Coral Fact Sheets – Agaricia agaricites. Viewed 01 Jan 2013 http://www.coral.aims.gov.au/factsheet.jsp?speciesCode=0561
  4. Al-Horani F, Al-Moghrabi S, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142(3):419–426CrossRefGoogle Scholar
  5. Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12(3):345–363CrossRefGoogle Scholar
  6. Alibert C, Kinsley L, Fallon SJ, McCulloch MT, Berkelmans R, McAllister F (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67(2):231–246CrossRefGoogle Scholar
  7. Allen KA, Hönisch B, Eggins SM, Rosenthal Y (2012) Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer. Earth Planet Sci Lett 351:270–280CrossRefGoogle Scholar
  8. Allison N, Finch AA, Webster JM, Clague DA (2007) Palaeoenvironmental records from fossil corals: the effects of submarine diagenesis on temperature and climate estimates. Geochim Cosmochim Acta 71(19):4693–4703CrossRefGoogle Scholar
  9. Allison N, Cohen I, Finch AA, Erez J, Tudhope AW (2014) Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat Commun 5:5741CrossRefGoogle Scholar
  10. Anderson KD, Heron SF, Pratchett MS (2015) Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island. Coral Reefs 34(2):479–490Google Scholar
  11. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105(45):17442–17446CrossRefGoogle Scholar
  12. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Chang Biol 17(5):1798–1808CrossRefGoogle Scholar
  13. Araoka D, Inoue M, Suzuki A, Yokoyama Y, Edwards RL, Cheng H, Matsuzaki H, Kan H, Shikazono N, Kawahata H (2010) Historic 1771 Meiwa tsunami confirmed by high-resolution U/Th dating of massive Porites coral boulders at Ishigaki Island in the Ryukyus, Japan. Geochem Geophys Geosyst 11(6):Q06014CrossRefGoogle Scholar
  14. Araoka D, Yokoyama Y, Suzuki A, Goto K, Miyagi K, Miyazawa K, Matsuzaki H, Kawahata H (2013) Tsunami recurrence revealed by Porites coral boulders in the southern Ryukyu Islands, Japan. Geology 41(8):919–922CrossRefGoogle Scholar
  15. Armid A, Asami R, Fahmiati T, Sheikh MA, Fujimura H, Higuchi T, Taira E, Shinjo R, Oomori T (2011) Seawater temperature proxies based on DSr, DMg, and DU from culture experiments using the branching coral Porites cylindrica. Geochim Cosmochim Acta 75(15):4273–4285CrossRefGoogle Scholar
  16. Asami R, Felis T, Deschamps P, Hanawa K, Iryu Y, Bard E, Durand N, Murayama M (2009) Evidence for tropical South Pacific climate change during the younger Dryas and the Bølling–Allerød from geochemical records of fossil Tahiti corals. Earth Planet Sci Lett 288(1):96–107CrossRefGoogle Scholar
  17. Barnes DJ, Devereux MJ (1988) Variations in skeletal architecture associated with density banding in the hard coral Porites. J Exp Mar Biol Ecol 121(1):37–54CrossRefGoogle Scholar
  18. Barnes DJ, Taylor RB (2001a) Natural and artificial luminescence in a skeletal slice of Porites. Coral Reefs 19(3):270CrossRefGoogle Scholar
  19. Barnes DJ, Taylor RB (2001b) On the nature and causes of luminescent lines and bands in coral skeletons. Coral Reefs 19(3):221–230CrossRefGoogle Scholar
  20. Barnes DJ, Taylor RB (2005) On the nature and causes of luminescent lines and bands in coral skeletons: II. Contribution of skeletal crystals. J Exp Mar Biol Ecol 322(2):135–142CrossRefGoogle Scholar
  21. Barnes JW, Lang EJ, Potratz HA (1956) Ratio of ionium to uranium in coral limestone. Science 124(27):175–176CrossRefGoogle Scholar
  22. Bathurst RG (1975) Carbonate sediments and their diagenesis, Development in sedimentology. Elsevier, AmsterdamGoogle Scholar
  23. Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257(5070):644–647CrossRefGoogle Scholar
  24. Bessat F, Buigues D (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 175(1–4):381–392CrossRefGoogle Scholar
  25. Bosscher H (1993) Computerized-tomography and skeletal density of coral skeletons. Coral Reefs 12(2):97–103CrossRefGoogle Scholar
  26. Boto K, Isdale P (1985) Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone. Nature 315(6018):396–397CrossRefGoogle Scholar
  27. Brown B, Tissier M, Howard L, Charuchinda M, Jackson J (1986) Asynchronous deposition of dense skeletal bands in Porites lutea. Mar Biol 93(1):83–89CrossRefGoogle Scholar
  28. Brown BE, Letissier MDA, Scoffin TP, Tudhope AW (1990) Evaluation of the environmental-impact of dredging on intertidal coral reefs at Ko-Phuket, Thailand, using ecological and physiological-parameters. Mar Ecol Prog Ser 65(3):273–281CrossRefGoogle Scholar
  29. Brown CJ, Schoeman DS, Sydeman WJ, Brander K, Buckley LB, Burrows M, Duarte CM, Moore PJ, Pandolfi JM, Poloczanska E (2011) Quantitative approaches in climate change ecology. Glob Chang Biol 17(12):3697–3713CrossRefGoogle Scholar
  30. Buddemeier RW (1974) Environmental controls over annual and lunar monthly cycles in hermatypic coral calcification. In: Proc 2th Int Coral Reef Symp, pp 259–267Google Scholar
  31. Cannon GA (1966) Tropical waters in the western Pacific Ocean, August–September 1957. In: Deep sea research and oceanographic abstracts, vol 6. Elsevier, pp 1139–1148Google Scholar
  32. Cantin N, Lough J (2014) Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef. PLoS One 9(2):e88720CrossRefGoogle Scholar
  33. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329(5989):322–325CrossRefGoogle Scholar
  34. Carilli JE, Prouty NG, Hughen KA, Norris RD (2009) Century-scale records of land-based activities recorded in Mesoamerican coral cores. Mar Pollut Bull 58(12):1835–1842CrossRefGoogle Scholar
  35. Carilli JE, Norris RD, Black B, Walsh SM, McField M (2010) Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob Chang Biol 16(4):1247–1257CrossRefGoogle Scholar
  36. Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7(3):e34418CrossRefGoogle Scholar
  37. Carricart-Ganivet JP, Vásquez-Bedoya LF, Cabanillas-Terán N, Blanchon P (2013) Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea. Coral Reefs 32(3):769–777CrossRefGoogle Scholar
  38. Castillo KD, Ries JB, Weiss JM (2011) Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican barrier reef system, southern Belize. PLoS One 6(2):e14615CrossRefGoogle Scholar
  39. Castillo KD, Ries JB, Weiss JM, Lima FP (2012) Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat Clim Chang 2(10):756–760CrossRefGoogle Scholar
  40. Chalker BE, Barnes DJ (1990) Gamma-densitometory for the measurement of skeletal densty. Coral Reefs 9(1):11–23CrossRefGoogle Scholar
  41. Chalker B, Barnes D, Isdale P (1985) Calibration of x-ray densitometry for the measurement of coral skeletal density. Coral Reefs 4(2):95–100CrossRefGoogle Scholar
  42. Chen J, Edwards RL, Wasserburg G (1986) 238U, 234U and 232Th in seawater. Earth Planet Sci Lett 80(3):241–251CrossRefGoogle Scholar
  43. Clark TR, Roff G, Zhao J-x, Feng Y-x, Done TJ, Pandolfi JM (2014) Testing the precision and accuracy of the U–Th chronometer for dating coral mortality events in the last 100 years. Quat Geochronol 23:35–45CrossRefGoogle Scholar
  44. Cohen AL, Hart SR (1997) The effect of colony topography on climate signals in coral skeleton. Geochim Cosmochim Acta 61(18):3905–3912CrossRefGoogle Scholar
  45. Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296(5566):331–333CrossRefGoogle Scholar
  46. Cooper TF, O’Leary RA, Lough JM (2012) Growth of western Australian corals in the anthropocene. Science 335(6068):593–596CrossRefGoogle Scholar
  47. Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr Palaeoclimatol Palaeoecol 232(2–4):408–428CrossRefGoogle Scholar
  48. D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar Coast Shelf S 73(1):325–340CrossRefGoogle Scholar
  49. D’Olivo J, McCulloch M, Judd K (2013) Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change. Coral Reefs 32(4):999–1012CrossRefGoogle Scholar
  50. de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269(5228):1247–1249CrossRefGoogle Scholar
  51. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323(5910):116–119CrossRefGoogle Scholar
  52. DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43(1):7–10CrossRefGoogle Scholar
  53. DeLong K, Quinn TM, Taylor FW, Shen C-C, Lin K (2013) Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Palaeogeogr Palaeoclimatol Palaeoecol 373:6–24CrossRefGoogle Scholar
  54. Deser C, Alexander MA, Timlin MS (1999) Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J Clim 12(6):1697–1706CrossRefGoogle Scholar
  55. Devlin M, Brodie J (2005) Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar Pollut Bull 51(1):9–22CrossRefGoogle Scholar
  56. Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A, McWilliams J, Bograd S, Arango H, Curchitser E (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35(8):L08607CrossRefGoogle Scholar
  57. Dietzel M, Gussone N, Eisenhauer A (2004) Co-precipitation of Sr2+and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50°C. Chem Geol 203(1):139–151CrossRefGoogle Scholar
  58. Ding Y, Chan JC (2005) The East Asian summer monsoon: an overview. Meteorog Atmos Phys 89(1–4):117–142Google Scholar
  59. Dishon G, Fisch J, Horn I, Kaczmarek K, Bijma J, Gruber DF, Nir O, Popovich Y, Tchernov D (2015) A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events. Biogeosciences 12(19):5677–5687CrossRefGoogle Scholar
  60. Dodge RE, Jickells T, Knap AH, Boyd S, Bak R (1984) Reef-building coral skeletons as chemical pollution (phosphorus) indicators. Mar Pollut Bull 15(5):178–187CrossRefGoogle Scholar
  61. Douville E, Paterne M, Cabioch G, Louvat P, Gaillardet J, Juillet-Leclerc A, Ayliffe L (2010) Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites). Biogeosciences 7(8):2445–2459CrossRefGoogle Scholar
  62. Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33(2):101–107CrossRefGoogle Scholar
  63. Enmar R, Stein M, Bar-Matthews M, Sass E, Katz A, Lazar B (2000) Diagenesis in live corals from the Gulf of Aqaba. I The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64(18):3123–3132CrossRefGoogle Scholar
  64. Erler DV, Wang XT, Sigman DM, Scheffers SR, Shepherd BO (2015) Controls on the nitrogen isotopic composition of shallow water corals across a tropical reef flat transect. Coral Reefs 34(1):329–338CrossRefGoogle Scholar
  65. Erler DV, Wang XT, Sigman DM, Scheffers SR, Martínez-García A, Haug GH (2016) Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: implications for coastal nutrient cycling in the Great Barrier Reef Lagoon. Earth Planet Sci Lett 434:161–170CrossRefGoogle Scholar
  66. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50(2):125–146CrossRefGoogle Scholar
  67. Fabricius KE (2011) Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In: Coral reefs: an ecosystem in transition. Springer, pp 493–505Google Scholar
  68. Fabricius KE, Cséke S, Humphrey C, De’ath G (2013) Does trophic status enhance or reduce the thermal tolerance of Scleractinian corals? A review, experiment and conceptual framework. PLoS One 8(1):e54399CrossRefGoogle Scholar
  69. Fairchild I, Killawee J (1995) Selective leaching in glacierized terrains and implications for retention of primary chemical signals in carbonate rocks. In: Proc 8th Int Sympo Water-Rock Interaction-WRI-8 Vladivostok, Russia, 15–19 August 1995. Water-Rock Interaction. A.A. Balkema, p 79–82Google Scholar
  70. Fallon S (2011) Radiocarbon (14C): dating and corals. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Netherlands, pp 829–834CrossRefGoogle Scholar
  71. Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172(3):221–238CrossRefGoogle Scholar
  72. Felis T, Patzold J, Loya Y (2003) Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22(4):​328–336Google Scholar
  73. Felis T, Suzuki A, Kuhnert H, Dima M, Lohmann G, Kawahata H (2009) Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean. Geology 37(6):527–530CrossRefGoogle Scholar
  74. Felis T, Suzuki A, Kuhnert H, Rimbu N, Kawahata H (2010) Pacific decadal oscillation documented in a coral record of North Pacific winter temperature since 1873. Geophys Res Lett 37(14):L14605Google Scholar
  75. Fujioka Y (1999) Mass destruction of the hermatypic corals during a bleaching event in Ishigaki Island, southwestern Japan. Galaxea, JCRS 1:41–50CrossRefGoogle Scholar
  76. Fujita K, Hongo C, Koutoku M, Ito S, Asami R, Reimer J (2015) Buried fossil microatolls off the Kaichu-Doro Causeway, between Okinawa and Henza Islands. Fauna Ryukyuana 24:13–15Google Scholar
  77. Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70(18):4617–4634CrossRefGoogle Scholar
  78. Gagan MK (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279(5353):1014–1018CrossRefGoogle Scholar
  79. Gagan MK, Ayliffe LK, Opdyke BN, Hopley D, Scott-Gagan H, Cowley J (2002) Coral oxygen isotope evidence for recent groundwater fluxes to the Australian Great Barrier Reef. Geophys Res Lett 29(20):1982CrossRefGoogle Scholar
  80. Gagan MK, Dunbar GB, Suzuki A (2012) The effect of skeletal mass accumulation in Porites on coral Sr/Ca and δ18O paleothermometry. Paleoceanography 27(1):PA1203CrossRefGoogle Scholar
  81. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C –18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70(6):1439–1456CrossRefGoogle Scholar
  82. Goto K, Okada K, Imamura F (2009) Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Mar Geol 262(1):14–24CrossRefGoogle Scholar
  83. Goto K, Kawana T, Imamura F (2010a) Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Sci Rev 102(1):77–99CrossRefGoogle Scholar
  84. Goto K, Miyagi K, Kawamata H, Imamura F (2010b) Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Mar Geol 269(1):34–45CrossRefGoogle Scholar
  85. Goto K, Shinozaki T, Minoura K, Okada K, Sugawara D, Imamura F (2010c) Distribution of boulders at Miyara Bay of Ishigaki Island, Japan: a flow characteristic indicator of tsunami and storm waves. Island Arc 19(3):412–426CrossRefGoogle Scholar
  86. Goto K, Miyagi K, Kawana T, Takahashi J, Imamura F (2011) Emplacement and movement of boulders by known storm waves-field evidence from the Okinawa Islands, Japan. Mar Geol 283(1):66–78CrossRefGoogle Scholar
  87. Grothe PR, Cobb KM, Bush SL, Cheng H, Santos GM, Southon JR, Lawrence Edwards R, Deocampo DM, Sayani HR (2016) A comparison of U/Th and rapid-screen 14C dates from Line Island fossil corals. Geochem Geophys Geosyst 17(3):833–845CrossRefGoogle Scholar
  88. Grove CA, Nagtegaal R, Zinke J, Scheufen T, Koster B, Kasper S, McCulloch MT, Bergh G, Brummer GJA (2010) River runoff reconstructions from novel spectral luminescence scanning of massive coral skeletons. Coral Reefs 29(3):579–591CrossRefGoogle Scholar
  89. Grove CA, Zinke J, Scheufen T, Maina J, Epping E, Boer W, Randriamanantsoa B, Brummer G-J (2012) Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar. Biogeosciences 9(8):3063–3081CrossRefGoogle Scholar
  90. Grove CA, Zinke J, Peeters F, Park W, Scheufen T, Kasper S, Randriamanantsoa B, McCulloch MT, Brummer G-JA (2013) Madagascar corals reveal Pacific multidecadal modulation of rainfall since 1708. Clim Past 9:641–656CrossRefGoogle Scholar
  91. Guzmán HM, Jiménez CE (1992) Contamination of coral reefs by heavy metals along the Caribbean coast of Central America (Costa Rica and Panama). Mar Pollut Bull 24(11):554–561CrossRefGoogle Scholar
  92. Guzman HM, Cipriani R, Jackson JBC (2008) Historical decline in coral reef growth after the Panama Canal. Ambio 37(5):342–346CrossRefGoogle Scholar
  93. Halfar J, Godinez-Orta L, Riegl B, Valdez-Holguin J, Borges J (2005) Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions. Coral Reefs 24(4):582–592CrossRefGoogle Scholar
  94. Hanawa K, Watanabe T, Iwasaka N, Suga T, Toba Y (1988) Surface thermal conditions in the Western North Pacific during the ENSO Events. J Meteor Soc Jpn Ser II 66(3):445–456Google Scholar
  95. Harii S, Hongo C, Ishihara M, Ide Y, Kayanne H (2014) Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey. Mar Ecol Prog Ser 509:171–180CrossRefGoogle Scholar
  96. Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60(16):3075–3084CrossRefGoogle Scholar
  97. Hasegawa H, Ichikawa K, Kobayashi M, Kobayashi T, Hoshino M, Mezaki S (1999) The mass-bleaching of coral reefs in the Ishigaki Lagoon, 1998. Galaxea, JCRS 1:31–39CrossRefGoogle Scholar
  98. Hayashi E, Suzuki A, Nakamura T, Iwase A, Ishimura T, Iguchi A, Sakai K, Okai T, Inoue M, Araoka D (2013) Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment. Earth Planet Sci Lett 362:198–206CrossRefGoogle Scholar
  99. Helmle KP, Dodge RE, Swart PK, Gledhill DK, Eakin CM (2011) Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nat Commun 2:215CrossRefGoogle Scholar
  100. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56(1):537–543CrossRefGoogle Scholar
  101. Hendy EJ, Gagan MK, Lough JM, McCulloch M, deMenocal PB (2007) Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals. Paleoceanography 22(4):​PA4101Google Scholar
  102. Hirabayashi S, Yokoyama Y, Suzuki A, Kawakubo Y, Okai T, Nojima S (2013) Coral growth-rate insensitive Sr/Ca as a robust temperature recorder at the extreme latitudinal limits of Porites. Geochem J Express lett 47:e5Google Scholar
  103. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742CrossRefGoogle Scholar
  104. Holcomb M, DeCarlo T, Gaetani G, McCulloch M (2016) Factors affecting B/Ca ratios in synthetic aragonite. Chem Geol 437:67–76CrossRefGoogle Scholar
  105. Hongo C (2010) Sea-level standstill and dominant hermatypic coral from the Holocene raised reef terraces at the Kikai Island, Ryukyu Islands. J Geogr (Chigaku Zasshi) 119(5):860–871CrossRefGoogle Scholar
  106. Hongo C (2012) Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future. Quat Sci Rev 35:82–99CrossRefGoogle Scholar
  107. Hongo C, Yamano H (2013) Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995–2009). PLoS One 8(4):e60952CrossRefGoogle Scholar
  108. Hönisch B, Hemming N, Grottoli A, Amat A, Hanson G, Bijma J (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim Cosmochim Acta 68(18):3675–3685CrossRefGoogle Scholar
  109. Horta-Puga G, Carriquiry JD (2012) Coral Ba/Ca molar ratios as a proxy of precipitation in the northern Yucatan Peninsula, Mexico. Appl Geochem 27(8):1579–1586CrossRefGoogle Scholar
  110. Inoue M, Tanimizu M (2008) Anthropogenic lead inputs to the western Pacific during the 20th century. Sci Total Environ 406(1):123–130CrossRefGoogle Scholar
  111. Inoue M, Hata A, Suzuki A, Nohara M, Shikazono N, Yim WW-S, Hantoro WS, Donghuai S, Kawahata H (2006) Distribution and temporal changes of lead in the surface seawater in the western Pacific and adjacent seas derived from coral skeletons. Environ Pollut 144(3):1045–1052CrossRefGoogle Scholar
  112. Inoue M, Suwa R, Suzuki A, Sakai K, Kawahata H (2011) Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys Res Lett 38(12):L12809Google Scholar
  113. Inoue M, Ishikawa D, Miyaji T, Yamazaki A, Suzuki A, Yamano H, Kawahata H, Watanabe T (2014) Evaluation of Mn and Fe in coral skeletons (Porites spp.) as proxies for sediment loading and reconstruction of 50 yrs of land use on Ishigaki Island, Japan. Coral Reefs 33(2):363–373CrossRefGoogle Scholar
  114. Isdale PP, Daniel EE (1989) The design and deployment of lightweight submarine fixed drilling system for the acquisition of coral cores. Mar Technol Soc J 23:3–8Google Scholar
  115. Jacques TG, Pilson MEQ, Cummings C, Marshall N (1977) Laboratory observations on respiration, photosynthesis and factors affecting coral calcification in the temperate coral Astrangia danae. In: Proc 3th Int Coral Reef Symp 2, p 455–461Google Scholar
  116. Jian Z, Wang P, Saito Y, Wang J, Pflaumann U, Oba T (2000) Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean. Earth Planet Sci Lett 184:305–319CrossRefGoogle Scholar
  117. Juliet-Leclerc A, Schmidt G (2001) A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites. Geophys Res Lett 28(21):4135–4138CrossRefGoogle Scholar
  118. Kawakubo Y, Yokoyama Y, Suzuki A, Okai T, Alibert C, Kinsley L, Eggins S (2014) Precise determination of Sr/Ca by laser ablation ICP-MS compared to ICP-AES and application to multi-century temperate corals. Geochem J 48(2):145–152CrossRefGoogle Scholar
  119. Kawana T, Kan H (2002) Description of the new drilling cores throuth the Holocene coral reefs at the Gushichan coast in the southern Okinawa lsland, the Ryukyus, Japan. Bull CE, University of the Ryukyus 60 (60), pp 235–244 (in Japanese)Google Scholar
  120. Kawana T, Nakata T (1994) Timing of late Holocene tsunamis originated around the southern Ryukyu Islands, Japan, deduced from coralline tsunami deposits. J Geogr Jpn 103(4):352–376CrossRefGoogle Scholar
  121. Kayanne H, Harii S, Yamano H, Tamura M, Ide Y, Akimoto F (1999) Changes in living coral coverage before and after the 1998 bleaching event on coral reef flats of Ishigaki Island, Ryukyu Islands. Galaxea, JCRS 1999(1):73–82CrossRefGoogle Scholar
  122. Kim S-T, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta 71(19):4704–4715CrossRefGoogle Scholar
  123. Kinsman DJ, Holland H (1969) The co-precipitation of cations with CaCO 3—IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochim Cosmochim Acta 33(1):1–17CrossRefGoogle Scholar
  124. Kiyama O, Yamada T, Nakamori T, Iryu T (2000) Early Holocene coral δ18O-based sea surface temperature. Quat Res 39(1):69–80CrossRefGoogle Scholar
  125. Kleypas JA (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120CrossRefGoogle Scholar
  126. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39(1):146–159CrossRefGoogle Scholar
  127. Knutson DW, Smith SV, Buddemei RW (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177(4045):270–272CrossRefGoogle Scholar
  128. Kosaka Y, Nakamura H (2010) Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: the Pacific-Japan pattern. J Clim 23(19):5085–5108CrossRefGoogle Scholar
  129. Krief S, Hendy EJ, Fine M, Yam R, Meibom A, Foster GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74(17):4988–5001CrossRefGoogle Scholar
  130. Kubota K, Yokoyama Y, Ishikawa T, Obrochta S, Suzuki A (2014) Larger CO2 source at the equatorial Pacific during the last deglaciation. Sci Rep 4:5261CrossRefGoogle Scholar
  131. Kubota K, Yokoyama Y, Ishikawa T, Suzuki A (2015) A new method for calibrating a boron isotope paleo-pH proxy using massive Porites corals. Geochem Geophys Geosyst 16(9):3333–3342CrossRefGoogle Scholar
  132. Kumarsingh K, Laydoo R, Chen JK, Siung-Chang AM (1998) Historic records of phosphorus levels in the reef-building coral Montastrea annularis from Tobago, West Indies. Mar Pollut Bull 36(12):1012–1018CrossRefGoogle Scholar
  133. Kurita N, Fujiyoshi Y, Nakayama T, Matsumi Y, Kitagawa H (2015) East Asian Monsoon controls on the inter-annual variability in precipitation isotope ratio in Japan. Clim Past 11(2):339–353CrossRefGoogle Scholar
  134. Kwiatkowski L, Cox PM, Economou T, Halloran PR, Mumby PJ, Booth BB, Carilli J, Guzman HM (2013) Caribbean coral growth influenced by anthropogenic aerosol emissions. Nat Geosci 6(6):362–366CrossRefGoogle Scholar
  135. LaVigne M, Field MP, Anagnostou E, Grottoli AG, Wellington GM, Sherrell RM (2008) Skeletal P/Ca tracks upwelling in gulf of Panama coral: evidence for a new seawater phosphate proxy. Geophys Res Lett 35(5):L05604CrossRefGoogle Scholar
  136. LaVigne M, Matthews KA, Grottoli AG, Cobb KM, Anagnostou E, Cabioch G, Sherrell RM (2010) Coral skeleton P/Ca proxy for seawater phosphate: multi-colony calibration with a contemporaneous seawater phosphate record. Geochim Cosmochim Acta 74(4):1282–1293CrossRefGoogle Scholar
  137. LaVigne M, Grottoli AG, Palardy JE, Sherrell RM (2016) Multi-colony calibrations of coral Ba/Ca with a contemporaneous in situ seawater barium record. Geochim Cosmochim Acta 179:203–216CrossRefGoogle Scholar
  138. Lea D, Boyle E (1989) Barium content of benthic foraminifera controlled by bottom-water composition. Nature 338:751–753CrossRefGoogle Scholar
  139. Lee K, Kim T-W, Byrne RH, Millero FJ, Feely RA, Liu Y-M (2010) The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Acta 74(6):1801–1811CrossRefGoogle Scholar
  140. Li Y, Wang F (2012) Spreading and salinity change of North Pacific tropical water in the Philippine Sea. J Oceanogr 68(3):439–452CrossRefGoogle Scholar
  141. Lough JM (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264CrossRefGoogle Scholar
  142. Lough JM (2010) Climate records from corals. Wiley Interdiscip Rev Clim Chang 1(3):318–331CrossRefGoogle Scholar
  143. Lough JM, Barnes DJ (1997) Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol 211(1):29–67CrossRefGoogle Scholar
  144. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245(2):225–243CrossRefGoogle Scholar
  145. Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226(3):187–202CrossRefGoogle Scholar
  146. Lough JM, Cooper TF (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth-Sci Rev 108(3–4):170–184CrossRefGoogle Scholar
  147. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4(2)Google Scholar
  148. Luo X, Rehkämper M, Lee D-C, Halliday AN (1997) High precision 230Th/232Th and 234U/238U measurements using energyfiltered ICP magnetic sector multiple collector mass spectrometry. Int J Mass Spectrom Ion Process 171(1):105–117CrossRefGoogle Scholar
  149. Macintyre I (1978) A hand-operated submersible drill for coring reef substrata. In: Coral reefs: research methods UNESCO Monographs on Oceanographic Methodology 5:75–80Google Scholar
  150. Mallela J, Lewis SE, Croke B (2013) Coral skeletons provide historical evidence of phosphorus runoff on the Great Barrier Reef. PLoS One 8(9):e75663CrossRefGoogle Scholar
  151. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor 78(6):1069–1079CrossRefGoogle Scholar
  152. Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015a) Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida Keys: the importance of thermal stress and inimical waters. J Exp Mar Biol Ecol 471:198–207CrossRefGoogle Scholar
  153. Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015b) Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: an inshore-offshore comparison. Mar Ecol Prog Ser 521:81–89Google Scholar
  154. Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201CrossRefGoogle Scholar
  155. Marion GS, Dunbar RB, Mucciarone DA, Kremer JN, Lansing JS, Arthawiguna A (2005) Coral skeletal δ15 N reveals isotopic traces of an agricultural revolution. Mar Pollut Bull 50(9):931–944CrossRefGoogle Scholar
  156. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23(2):218–224Google Scholar
  157. Matson EG (2011) Core plugs. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Netherlands, pp 294–296CrossRefGoogle Scholar
  158. Matthews B, Jones A, Theodorou N, Tudhope A (1996) Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Mar Chem 55(3):317–332CrossRefGoogle Scholar
  159. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53(1):151–162CrossRefGoogle Scholar
  160. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18(6):849–857CrossRefGoogle Scholar
  161. McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58(12):2747–2754CrossRefGoogle Scholar
  162. McCulloch MT, Tudhope AW, Esat TM, Mortimer GE, Chappell J, Pillans B, Chivas AR, Omura A (1999) Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283(5399):202–204CrossRefGoogle Scholar
  163. McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421(6924):727–730CrossRefGoogle Scholar
  164. McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2(8):623–627CrossRefGoogle Scholar
  165. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar RB, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M (2012b) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87(15):21–34CrossRefGoogle Scholar
  166. McGregor HV, Gagan MK (2003) Diagenesis and geochemistry of Porites corals from Papua New Guinea. Geochim Cosmochim Acta 67(12):2147–2156CrossRefGoogle Scholar
  167. McLaren SJ (2011) Aragonite. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Netherlands, pp 47–47CrossRefGoogle Scholar
  168. McNeil BI, Matear RJ, Barnes DJ (2004) Coral reef calcification and climate change: the effect of ocean warming. Geophys Res Lett 31(22):L22309CrossRefGoogle Scholar
  169. Midorikawa T, Ishii M, Saito S, Sasano D, Kosugi N, Motoi T, Kamiya H, Nakadate A, Nemoto K, Inoue HY (2010) Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific. Tellus B 62(5):649–659CrossRefGoogle Scholar
  170. Miller AJ, Cayan DR, White WB (1998) A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J Clim 11(12):3112–3127CrossRefGoogle Scholar
  171. Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim Cosmochim Acta 59(10):2025–2042CrossRefGoogle Scholar
  172. Minobe S (1997) A 50-70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24(6):683–686CrossRefGoogle Scholar
  173. Mishima M, Kawahata H, Suzuki A, Inoue M, Okai T, Omura A (2009) Reconstruction of the East China Sea palaeoenvironment at 16 ka by comparison of fossil and modern Faviidae corals from the Ryukyus, southwestern Japan. J Quat Sci 24(8):928–936CrossRefGoogle Scholar
  174. Mishima M, Suzuki A, Nagao M, Ishimura T, Inoue M, Kawahata H (2010) Abrupt shift toward cooler condition in the earliest 20th century detected in a 165 year coral record from Ishigaki Island, southwestern Japan. Geophys Res Lett 37(15):L15609CrossRefGoogle Scholar
  175. Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274(5289):961–963CrossRefGoogle Scholar
  176. Mizuno K, White WB (1983) Annual and interannual variability in the Kuroshio current system. J Phys Oceanogr 13(10):1847–1867CrossRefGoogle Scholar
  177. Montaggioni LF, Braithwaite CJ (2009) Quaternary coral reef systems: history, development processes and controlling factors, Developments in Marine Geology, vol 5. Elsevier, AmsterdamGoogle Scholar
  178. Montagna P, McCulloch M, Douville E, Correa ML, Trotter J, Rodolfo-Metalpa R, Dissard D, Ferrier-Pagès C, Frank N, Freiwald A (2014) Li/Mg systematics in scleractinian corals: calibration of the thermometer. Geochim Cosmochim Acta 132(1):288–310CrossRefGoogle Scholar
  179. Morimoto M, Kitagawa H, Shibata Y, Kayanne H (2004) Seasonal radiocarbon variation of surface seawater recorded in a coral from Kikai Island, subtropical northwestern Pacific. Radiocarbon 46(2):643–648CrossRefGoogle Scholar
  180. Morimoto M, Kayanne H, Abe O, McCulloch MT (2007) Intensified mid-Holocene Asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific. Quat Res 67(2):204–214CrossRefGoogle Scholar
  181. Morrongiello JR, Thresher RE, Smith DC (2012) Aquatic biochronologies and climate change. Nat Clim Chang 2(12):849–857CrossRefGoogle Scholar
  182. Müller A, Gagan MK, McCulloch MT (2001) Early marine diagenesis in corals and geochemical consequences for paleoceanographic reconstructions. Geophys Res Lett 28(23):4471–4474CrossRefGoogle Scholar
  183. Müller A, Gagan MK, Lough JM (2004) Effect of early marine diagenesis on coral reconstructions of surface-ocean 13C/12C and carbonate saturation state. Glob Biogeochem Cycles 18(1):GB1033Google Scholar
  184. Nagtegaal R, Grove CA, Kasper S, Zinke J, Boer W, Brummer G-JA (2012) Spectral luminescence and geochemistry of coral aragonite: effects of whole-core treatment. Chem Geol 318-319:6–15CrossRefGoogle Scholar
  185. Nakamura T, Masuda K, Miyake F, Hakozaki M, Kimura K, Nishimoto H, Hitoki E (2016) High-precision age determination of Holocene samples by radiocarbon dating with accelerator mass spectrometry at Nagoya University. Quat Int 397:250–257CrossRefGoogle Scholar
  186. Nishida K, Iguchi A, Ishimura T, Sakai K, Suzuki A (2014a) Skeletal isotopic responses of the scleractinian coral Isopora palifera to experimentally controlled water temperatures. Geochem J 48(4):e9–e14CrossRefGoogle Scholar
  187. Nishida K, Ishikawa K, Iguchi A, Tanaka Y, Sato M, Ishimura T, Inoue M, Nakamura T, Sakai K, Suzuki A (2014b) Skeletal oxygen and carbon isotope compositions of Acropora coral primary polyps experimentally cultured at different temperatures. Geochem Geophys Geosyst 15(7):2840–2849CrossRefGoogle Scholar
  188. Obert JC, Scholz D, Felis T, Brocas WM, Jochum KP, Andreae MO (2016) 230 Th/U dating of last interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material. Geochim Cosmochim Acta 178:20–40CrossRefGoogle Scholar
  189. Okai T, Suzuki A, Kawahata H, Terashima S, Imai N (2002) Preparation of a new geological survey of Japan geochemical reference material: coral JCp-1. Geostand Newslett 26(1):95–99CrossRefGoogle Scholar
  190. Omata T, Okamoto M, Furushima Y (2002) Skeletal growth history of modern corals in Sekisei lagoon as a bio-indicator. JAMSTEC-R 45:17–30Google Scholar
  191. Omata T, Suzuki A, Kawahata H, Nojima S, Minoshima K, Hata A (2006) Oxygen and carbon stable isotope systematics in Porites coral near its latitudinal limit: the coral response to low-thermal temperature stress. Glob Planet Chang 53(1–2):137–146CrossRefGoogle Scholar
  192. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686CrossRefGoogle Scholar
  193. Pelejero C, Calvo E, McCulloch MT, Marshall JF, Gagan MK, Lough JM, Opdyke BN (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309(5744):2204–2207CrossRefGoogle Scholar
  194. Perrin C (2011) Diagenesis. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Netherlands, pp 309–321CrossRefGoogle Scholar
  195. Pratchett MS, Anderson KD, Hoogenboom M, Windam E, Baird AH, Pandolfi J, Edmunds P, Lough J (2015) Spatial, temporal and taxonomic variation in coral growth—implications for the structure and function of coral reef ecosystems. Oceanogr Mar Biol Annu Rev 53:215–295Google Scholar
  196. Prouty NG, Field ME, Stock JD, Jupiter SD, McCulloch M (2010) Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Mar Pollut Bull 60(10):1822–1835CrossRefGoogle Scholar
  197. Prouty NG, Storlazzi CD, McCutcheon AL, Jenson JW (2014) Historic impact of watershed change and sedimentation to reefs along west-central Guam. Coral Reefs 33(3):733–749CrossRefGoogle Scholar
  198. Quinn TM, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17(4):14.11–14.11CrossRefGoogle Scholar
  199. Quinn TM, Taylor FW (2006) SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea. Geophys Res Lett 33(4):L04601CrossRefGoogle Scholar
  200. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887CrossRefGoogle Scholar
  201. Reynaud S, Hemming NG, Juillet-Leclerc A, Gattuso J-P (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23(4):539–546Google Scholar
  202. Rosenfeld M, Shemesh A, Yam R, Sakai K, Loya Y (2006) Impact of the 1998 bleaching event on δ18O records of Okinawa corals. Mar Ecol Prog Ser 314:127–133CrossRefGoogle Scholar
  203. Sadler J, Webb GE, Nothdurft LD, Dechnik B (2014) Geochemistry-based coral palaeoclimate studies and the potential of ‘non-traditional’(non-massive Porites) corals: recent developments and future progression. Earth-Sci Rev 139:291–316CrossRefGoogle Scholar
  204. Sagawa T, Kuwae M, Tsuruoka K, Nakamura Y, Ikehara M, Murayama M (2014) Solar forcing of centennial-scale East Asian winter monsoon variability in the mid-to late Holocene. Earth Planet Sci Lett 395:124–135CrossRefGoogle Scholar
  205. Schoepf V, McCulloch MT, Warner ME, Levas SJ, Matsui Y, Aschaffenburg MD, Grottoli AG (2014) Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9(11):e112011CrossRefGoogle Scholar
  206. Schöne BR, Oschmann W, Tanabe K, Dettman D, Fiebig J, Houk SD, Kanie Y (2004) Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells—implications for changes in the East Asian monsoon and latitudinal shifts of the Polar Front. Quat Sci Rev 23(9–10):1137–1150CrossRefGoogle Scholar
  207. Schroeder JH (1969) Experimental dissolution of calcium, magnesium, and strontium from recent biogenic carbonates: a model of diagenesis. J Sediment Res 39(3):1057–1073Google Scholar
  208. Scoffin TP, Tudhope AW, Brown BE, Chansang H, Cheeney RF (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11(1):1–11CrossRefGoogle Scholar
  209. Seki A, Yokoyama Y, Suzuki A, Kawakubo Y, Okai T, Miyari Y, Matsuzaki H, Namizaki N, Kan H (2012) Mid-Holocene sea-surface temperature reconstruction using fossil corals from Kume Island, Ryukyu, Japan. Geochem J Express lett 46(6):E27–E32CrossRefGoogle Scholar
  210. Seo I, Lee YI, Watanabe T, Yamano H, Shimamura M, Yoo CM, Hyeong K (2013) A skeletal Sr/Ca record preserved in Dipsastraea (Favia) speciosa and implications for coral Sr/Ca thermometry in mid-latitude regions. Geochem Geophys Geosyst 14(8):2873–2885CrossRefGoogle Scholar
  211. Shaw TJ, Francois R (1991) A fast and sensitive ICP-MS assay for the determination of 230Th in marine sediments. Geochim Cosmochim Acta 55(7):2075–2078Google Scholar
  212. Shen GT, Boyle EA (1988) Determination of lead, cadmium and other trace metals in annually-banded corals. Chem Geol 67(1):47–62CrossRefGoogle Scholar
  213. Shen C-C, Lee T, Chen C-Y, Wang C-H, Dai C-F, Li L-A (1996) The calibration of D [Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochim Cosmochim Acta 60(20):3849–3858CrossRefGoogle Scholar
  214. Shen C-C, Wu C-C, Cheng H, Edwards RL, Hsieh Y-T, Gallet S, Chang C-C, Li T-Y, Lam DD, Kano A (2012) High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim Cosmochim Acta 99:71–86CrossRefGoogle Scholar
  215. Shimamura M, Hyeong K, Yoo CM, Watanabe T, Irino T, Jung H-S (2008) High resolution stable isotope records of sclreractinian corals near Ishigaki Island: their implication as a potential paleoclimatic recorder in middle latitude regions. Geosci J 12(1):25–31CrossRefGoogle Scholar
  216. Shinjo R, Asami R, Huang K-F, You C-F, Iryu Y (2013) Ocean acidification trend in the tropical North Pacific since the mid-20th century reconstructed from a coral archive. Mar Geol 342:58–64CrossRefGoogle Scholar
  217. Shotyk W, Immenhauser-Potthast I, Vogel HA (1995) Determination of nitrate, phosphate and organically bound phosphorus in coral skeletons by ion chromatography. J Chromatogr A 706(1):209–213CrossRefGoogle Scholar
  218. Shotyk W, Weiss D, Appleby P, Cheburkin A, Frei R, Gloor M, Kramers J, Reese S, Van Der Knaap W (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281(5383):1635–1640CrossRefGoogle Scholar
  219. Shuto K (1997) Interannual variations of water temperature and salinity along the 137° E meridian. Oceanogr Lit Rev 44(5):425–425Google Scholar
  220. Sinclair DJ, Kinsley LP, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62(11):1889–1901CrossRefGoogle Scholar
  221. Smith S, Buddemeier R, Redalje R, Houck J (1979) Strontium-calcium thermometry in coral skeletons. Science 204(4391):404–407CrossRefGoogle Scholar
  222. Smodej J, Reuning L, Wollenberg U, Zinke J, Pfeiffer M, Kukla PA (2015) Two-dimensional X-ray diffraction as a tool for the rapid, nondestructive detection of low calcite quantities in aragonitic corals. Geochem Geophys Geosyst 16(10):3778–3788CrossRefGoogle Scholar
  223. Sowa K, Watanabe T, Motai S, Seto Y, Nagai T (2008) Mineral phase of COCs and fibers in coral skeletons. In: Proc 11th Int Coral Reef Symp, pp 74–77Google Scholar
  224. Sowa K, Watanabe T, Kan H, Yamano H (2014) Influence of land development on Holocene Porites coral calcification at Nagura Bay, Ishigaki Island, Japan. PLoS One 9(2):e88790CrossRefGoogle Scholar
  225. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, TucsonGoogle Scholar
  226. Spencer T, Teleki KA, Bradshaw C, Spalding MD (2000) Coral bleaching in the southern Seychelles during the 1997–1998 Indian Ocean warm event. Mar Pollut Bull 40(7):569–586CrossRefGoogle Scholar
  227. Stocker T, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press New YorkGoogle Scholar
  228. Storz D, Gischler E (2011) Coral extension rates in the NW Indian Ocean I: reconstruction of 20th century SST variability and monsoon current strength. Geo-Mar Lett 31(3):141–154CrossRefGoogle Scholar
  229. Strom A, Francis RC, Mantua NJ, Miles EL, Peterson DL (2004) North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophys Res Lett 31(6):L06206CrossRefGoogle Scholar
  230. Suga T, Kato A, Hanawa K (2000) North pacific tropical water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog Oceanogr 47(2):223–256CrossRefGoogle Scholar
  231. Sugihara K, H. Yamano (2004) Tsushima archipelago. In: Coral reefs of Japan. MOE (Japan), Tokyo, pp 245–247Google Scholar
  232. Sugihara K, Nakamori T, Iryu Y, Sasaki K, Blanchon P (2003) Holocene sea-level change and tectonic uplift deduced from raised reef terraces, Kikai-jima, Ryukyu Islands, Japan. Sediment Geol 159(1–2):5–25CrossRefGoogle Scholar
  233. Susic M, Boto K, Isdale P (1991) Fluorescent humic acid bands in coral skeletons originate from terrestrial runoff. Mar Chem 33(1):91–104CrossRefGoogle Scholar
  234. Suzuki A, Yukino I, Kawahata H (1999) Temperature-skeletal δ18O relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan. Geochem J 33(6):419–428CrossRefGoogle Scholar
  235. Suzuki A, Gagan MK, De Deckker P, Omura A, Yukino I, Kawahata H (2001) Last interglacial coral record of enhanced insolation seasonality and seawater 18O enrichment in the Ryukyu Islands, northwest Pacific. Geophys Res Lett 28(19):3685–3688CrossRefGoogle Scholar
  236. Suzuki A, Gagan MK, Fabricius K, Isdale PJ, Yukino I, Kawahata H (2003) Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997–1998 mass bleaching event. Coral Reefs 22(4):357–369CrossRefGoogle Scholar
  237. Suzuki A, Yokoyama Y, Kan H, Minoshima K, Matsuzaki H, Hamanaka N, Kawahata H (2008) Identification of 1771 Meiwa tsunami deposits using a combination of radiocarbon dating and oxygen isotope microprofiling of emerged massive Porites boulders. Quat Geochronol 3(3):226–234CrossRefGoogle Scholar
  238. Tachibana Y, Honda M, Takeuchi K (1996) The abrupt decrease of the sea ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian Low. J Meteor Soc Jpn 74:579–584CrossRefGoogle Scholar
  239. Tanaka K, Holcomb M, Takahashi A, Kurihara H, Asami R, Shinjo R, Sowa K, Rankenburg K, Watanabe T, McCulloch M (2015) Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34(4):1139–1149CrossRefGoogle Scholar
  240. Taniguchi H, Iwao K, Omori M (1999) Coral bleaching around Akajima, Okinawa:I. A report of the September 1998 survey. Galaxea, JCRS 1999(1):59–64CrossRefGoogle Scholar
  241. Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28(2):519–528CrossRefGoogle Scholar
  242. Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Chang Biol 19(10):3011–3023CrossRefGoogle Scholar
  243. Tatsumoto M, Patterson CC (1963) The concentration of common lead in seawater. In: Geiss J, Goldberg E (eds) Earth science and meteoritics. Noth-Holland, Amsterdam, pp 74–89Google Scholar
  244. Trotter J, Montagna P, McCulloch M, Silenzi S, Reynaud S, Mortimer G, Martin S, Ferrier-Pagès C, Gattuso J-P, Rodolfo-Metalpa R (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303(3–4):163–173CrossRefGoogle Scholar
  245. Tsuchiya M (1968) Upper waters of the intertropical Pacific Ocean. In: The Johns Hopkins Oceanographic Studies, No. 4. The Johns Hopkins Press, Baltimore, p 50Google Scholar
  246. Tsunoda T, Kawahata H, Suzuki A, Minoshima K, Shikazono N (2006) Winter sea surface temperature variations based on coral oxygen isotope record from Ishigaki Island, the Ryukyus, Japan and its relationship to 1988/1989 climate regime shift. Chikyukagaku (Geochemistry) 40(4):301–311Google Scholar
  247. Tsunoda T, Kawahata H, Suzuki A, Minoshima K, Shikazono N (2008) East Asian monsoon to El Niño/Southern Oscillation: a shift in the winter climate of Ishigaki Island accompanying the 1988/1989 regime shift, based on instrumental and coral records. Geophys Res Lett 35(13):L13708CrossRefGoogle Scholar
  248. Uchikawa J, Penman DE, Zachos JC, Zeebe RE (2015) Experimental evidence for kinetic effects on B/Ca in synthetic calcite: implications for potential B (OH) 4 and B (OH) 3 incorporation. Geochim Cosmochim Acta 150:171–191CrossRefGoogle Scholar
  249. Uppström LR (1974) The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Res Oceanogr Abstr 21(2):161–162CrossRefGoogle Scholar
  250. Urabe Y, Maeda S (2014) The relationship between Japan’s recent temperature and decadal variability. SOLA 10:176–179CrossRefGoogle Scholar
  251. Urey H (1947) The thermodynamic properties of isotopic substances. J Chem Soc (Resumed):562Google Scholar
  252. Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6(5):e20013CrossRefGoogle Scholar
  253. Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S (2013) Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals. PNAS 110(5):1634–1639CrossRefGoogle Scholar
  254. Veron J (1992) Environmental control of Holocene changes to the world’s most northern hermatypic coral outcrop. Pac Sci 46(4):405–425Google Scholar
  255. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308(5723):854–857CrossRefGoogle Scholar
  256. Wang X, Sigman D, Cohen A, Sinclair D, Sherrell R, Weigand M, Erler DV, Ren H (2015) Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim Cosmochim Acta 148:179–190CrossRefGoogle Scholar
  257. Watanabe Y, Nakai S (2006) U-Th radioactive disequilibrium analyses for JCp-1, coral reference distributed by the Geological Survey of Japan. Geochem J 40(5):537–541CrossRefGoogle Scholar
  258. Watanabe T, Suzuki A, Minobe S, Kawashima T, Kameo K, Minoshima K, Aguilar YM, Wani R, Kawahata H, Sowa K, Nagai T, Kase T (2011) Permanent El Nino during the Pliocene warm period not supported by coral evidence. Nature 471(7337):209–211CrossRefGoogle Scholar
  259. Watanabe T, Kawamura T, Yamazaki A, Murayama M, Yamano H (2014) A 106 year monthly coral record reveals that the East Asian summer monsoon modulates winter PDO variability. Geophys Res Lett 41(10):3609–3614CrossRefGoogle Scholar
  260. Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73(8):2332–2346CrossRefGoogle Scholar
  261. Wellington G, Dunbar R, Merlen G (1996) Calibration of stable oxygen isotope signatures in Galapagos corals. Paleoceanography 11(4):467–480CrossRefGoogle Scholar
  262. Wen C, Graf H-F, Ronghui H (2000) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 17(1):48–60CrossRefGoogle Scholar
  263. Wu B, Wang J (2002) Winter Arctic oscillation, Siberian high and East Asian winter monsoon. Geophys Res Lett 29(19):1897CrossRefGoogle Scholar
  264. Wu HC, Moreau M, Linsley BK, Schrag DP, Corrège T (2014) Investigation of sea surface temperature changes from replicated coral Sr/Ca variations in the eastern equatorial Pacific (Clipperton Atoll) since 1874. Palaeogeogr Palaeoclimatol Palaeoecol 412:208–222CrossRefGoogle Scholar
  265. Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20(1):9–12CrossRefGoogle Scholar
  266. Yamano H, Sugihara K, Nakai T, Yamagawa O (2004) Iki Islands. In: Coral reefs of Japan. MOE (Japan), Tokyo, pp 242–244Google Scholar
  267. Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38(4):L04601CrossRefGoogle Scholar
  268. Yamazaki A, Watanabe T, Sowa K, Nakachi S, Yamano H, Iwase F (2009) Reconstructing palaeoenvironments of temperate regions based on high latitude corals at Tatsukushi Bay in Japan. J Jpn Coral Reef Soc 11:91–107CrossRefGoogle Scholar
  269. Yamazaki A, Watanabe T, Ogawa NO, Ohkouchi N, Shirai K, Toratani M, Uematsu M (2011a) Seasonal variations in the nitrogen isotope composition of Okinotori coral in the tropical western Pacific: a new proxy for marine nitrate dynamics. J Geophys Res 116:G04005Google Scholar
  270. Yamazaki A, Watanabe T, Tsunogai U (2011b) Nitrogen isotopes of organic nitrogen in reef coral skeletons as a proxy of tropical nutrient dynamics. Geophys Res Lett 38:L19605Google Scholar
  271. Yamazaki A, Watanabe T, Tsunogai U, Hasegawa H, Yamano H (2015) The coral δ15N record of terrestrial nitrate loading varies with river catchment land use. Coral Reefs 34(1):353–362CrossRefGoogle Scholar
  272. Yamazato K (1999) Coral bleaching in Okinawa, 1980 vs 1998. Galaxea, JCRS 1999(1):83–87CrossRefGoogle Scholar
  273. Yasunaka S, Hanawa K (2002) Regime shifts found in the Northern Hemisphere SST field. J Meteor Soc 80(1):119–135CrossRefGoogle Scholar
  274. Yasunaka S, Hanawa K (2005) Regime shift in the global sea-surface temperatures: its relation to El Niño–southern oscillation events and dominant variation modes. Int J Climatol 25(7):913–930CrossRefGoogle Scholar
  275. Yu J, Elderfield H (2007) Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet Sci Lett 258(1):73–86CrossRefGoogle Scholar
  276. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308(5728):1611–1615CrossRefGoogle Scholar
  277. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020CrossRefGoogle Scholar
  278. Zhao J-X, Collins LB (2011) Uranium series dating. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Netherlands, pp 1128–1132CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceToho UniversityFunabashiJapan
  2. 2.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations