Skip to main content

Physics of Microwave Heating

  • Chapter
  • First Online:
Microwave Chemical and Materials Processing

Abstract

Microwave heating generates heat by absorption and loss of energy. Accordingly, how does a substance turn microwave into heat? How does one measure the efficiency of microwave heating? These topics require to be understood. As such, this chapter provides some commentaries on these topics. Furthermore, a method for measuring the heating efficiency of microwaves, impedance matching, is also explained. There are books out there that presume that microwave heating refers to heating in which dielectric heating proceeds. This is not entirely correct, as there are several types of microwave heating phenomena. This chapter also describes the type of microwave heating through illustrations and some equations. Furthermore, actual examples and chemical reactions are given; such topics as the penetration depth of microwaves, the skin effect, the frequency effect, simulation of electromagnetic waves, and electrothermal and transmission modes are discussed. The coffee break shows the proper usage of microwave ovens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keysight Application Note, Basics of Measuring the Dielectric Properties of Materials (http://literature.cdn.keysight.com/litweb/pdf/5989-2589EN.pdf#search=%27Keysight+Basics+of+Measuring+the+Dielectric+Properties+of+Materials%27)

  2. H. Fukushima, Microwave processing and its applications to the future automobile, in Proceedings of 1st Global Congress on Microwave Energy Applications, Japan, 2008

    Google Scholar 

  3. C. Gabriel, S. Gabriel, E.H. Grant, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 27, 213–223 (1998)

    Article  CAS  Google Scholar 

  4. M.S. Venkatesh, G.S.V. Raghavan, An overview of dielectric properties measuring techniques. Can. Biosyst. Eng. 47, 7.15–7.30 (2005). http://www.csbe-scgab.ca/docs/journal/47/c0231.pdf#search=%27An+overview+of+dielectric+properties+measuring+techniques%27

  5. J. Baker-Jarvis, M.D. Janezic, J.H. Grosvenor, R.G. Geyer, in Transmission/reflection and short-circuit line methods for measuring permittivity and permeability, NIST Technical Note 1355-R, U.S. Government printing office Washington, (1993)

    Google Scholar 

  6. N. Wagner, T. Bore, J.-C. Robinet, D. Coelho, F. Taillade, S. Delepine-Lesoille, Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach. J. Geophys. Res. Solid Earth 118, 4729–4744 (2013)

    Article  Google Scholar 

  7. Agilent basics of measuring the dielectric properties of materials, Application Note, June 26, 2006 (http://www3.imperial.ac.uk/pls/portallive/docs/1/11949698.PDF)

  8. A.C. Metaxas, R.J. Meredith, Industrial Microwave Heating (Peter Peregrinus, London, UK, 1983)

    Google Scholar 

  9. Z. Peng, J.-Y. Hwang, M. Andriese, Magnetic loss in microwave heating. Appl. Phys. Express 5, 027304-1–027304-3 (2012)

    Google Scholar 

  10. S. Horikoshi, T. Sumi, N. Serpone, Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions. J. Microwave Power Electromagn. Energy 46, 215–228 (2012)

    Article  Google Scholar 

  11. S. Horikoshi, N. Serpone, Microwave frequency effect(s) in organic chemistry. Mini-Rev. Org. Chem. 8, 299–305 (2011)

    Article  CAS  Google Scholar 

  12. R. Cherbański, E. Molga, Intensification of desorption processes by use of microwaves—an overview of possible applications and industrial perspectives. Chem. Eng. Process. 1, 48–58 (2008)

    Google Scholar 

  13. R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvil, Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668 (1999)

    Article  CAS  Google Scholar 

  14. J. Cheng, R. Roy, D. Agrawal, Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites. J. Mater. Sci. Lett. 20, 1561–1563 (2001)

    Article  CAS  Google Scholar 

  15. J. Cheng, R. Roy, D. Agrawal, Radically different effects on materials by separated microwave electric and magnetic fields. Mater. Res. Innov. 5, 170–177 (2002)

    Google Scholar 

  16. S. Horikoshi, N. Serpone, in Microwaves in Organic Synthesis, 3rd edn., ed. by A. de la Hoz, A. Loupy (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2012)

    Google Scholar 

  17. https://en.wikipedia.org/wiki/Skin_effect

  18. Technical report by A.C. Metaxas (http://www.pueschner.com/downloads/MicrowaveHeating.pdf#search=‘40680ISMband3390’)

  19. M. Möller, H. Linn, New microwave frequency 5.8 GHz for industrial applications. Key Eng. Mater. 264–268, 735–739 (2004)

    Article  Google Scholar 

  20. H. Takizawa, K. Uheda, T. Endo, Rapid formation and growth of bixbyite-type (In0.67Fe0.33)2O3 by 28 GHz microwave irradiation. J. Am. Ceram. Soc. 83, 2321–2323 (2000)

    Article  CAS  Google Scholar 

  21. A.K. Malinger, Y.-S. Ding, S. Sithambaram, L. Espinal, S. Gomez, S.L. Suib, Microwave frequency effects on synthesis of cryptomelane-type manganese oxide and catalytic activity of cryptomelane precursor. J. Catal. 239, 290–298 (2006)

    Article  CAS  Google Scholar 

  22. R.N. Gedye, J.B. Wei, Rate enhancement of organic reactions by microwaves at atmospheric pressure. Can. J. Chem. 76, 525–532 (1998)

    CAS  Google Scholar 

  23. E. Séguin, S. Thomas, P. Bazin, G. Bond, C. Henriques, F. Thibault-Starzyk, Infrared and microwaves at 5.8 GHz in a catalytic reactor. Phys. Chem. Chem. Phys. 11, 1697–1701 (2009)

    Article  Google Scholar 

  24. L.D. Conde, S.L. Suib, Catalyst nature and frequency effects on the oligomerization of methane via microwave heating. J. Phys. Chem. B 107, 3663–3670 (2003)

    Article  CAS  Google Scholar 

  25. J.B. Hasted, Aqueous Dielectrics (Chapman and Hall, UK, 1974)

    Google Scholar 

  26. S. Horikoshi, S. Matsuzaki, T. Mitani, N. Serpone, Microwave frequency effects on dielectric properties of some common solvents and on microwave-assisted syntheses: 2-Allylphenol and the C12–C2–C12 Gemini surfactant. Rad. Phys. Chem. 81, 1885–1895 (2012)

    Article  CAS  Google Scholar 

  27. S. Horikoshi, S. Iida, M. Kajitani, S. Sato, N. Serpone, Chemical reactions with a novel 5.8-GHz microwave apparatus. 1. Characterization of properties of common solvents and application in a Diels–Alder organic synthesis. Org. Process Res. Dev. 12, 257–263 (2008)

    Article  CAS  Google Scholar 

  28. S. Horikoshi, T. Hamamura, M. Kajitani, M. Yoshizawa-Fujita, N. Serpone, Green chemistry with a novel 5.8-GHz microwave apparatus. Prompt one-pot solvent-free synthesis of a major ionic liquid: The 1-butyl-3-methyl- imidazolium tetrafluoroborate system. Org. Process Res. Dev. 12, 1089–1093 (2008)

    Article  CAS  Google Scholar 

  29. S. Horikoshi, T. Sato, N. Serpone, Rapid synthesis of Gemini surfactants using a novel 915-MHz microwave apparatus. J. Oleo Sci. 62, 39–44 (2013)

    Article  CAS  Google Scholar 

  30. I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358–1374 (2010)

    Article  CAS  Google Scholar 

  31. J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 127, 15791–15800 (2005)

    Article  CAS  Google Scholar 

  32. S. Horikoshi, H. Abe, K. Torigoe, M. Abe, N. Serpone, Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors. Nanoscale 2, 1441–1447 (2010)

    Article  CAS  Google Scholar 

  33. S. Horikoshi, H. Abe, T. Sumi, K. Torigoe, H. Sakai, N. Serpone, M. Abe, Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. Nanoscale 3, 1697–1702 (2011)

    Article  CAS  Google Scholar 

  34. M.B. Mohamed, K.M. Abouzeid, V. Abdelsayed, A.A. Aljarash, M.S. El-Shall, Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis. ACS Nano 4, 2766–2772 (2010)

    Article  CAS  Google Scholar 

  35. L. Yu, A. Andriola, Quantitative gold nanoparticle analysis methods: a review. Talanta 82, 869–875 (2010)

    Article  CAS  Google Scholar 

  36. M. Tsuji, N. Miyamae, M. Nishio, S. Hikino, N. Ishigami, Shape selective oxidative etching and growth of single-twin plate-like and multiple-twin decahedral and icosahedral gold nanocrystals in the presence of au seeds under microwave heating. Bull. Chem. Soc. Jpn 80, 2024–2038 (2007)

    Article  CAS  Google Scholar 

  37. N. Bengtsson, P.O. Risman, Dielectric properties of foods at 3 GHz as determined by a cavity perturbation technique. J. Microwave Power Electromagn. Energy 6, 107–123 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Horikoshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horikoshi, S., Schiffmann, R.F., Fukushima, J., Serpone, N. (2018). Physics of Microwave Heating. In: Microwave Chemical and Materials Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-6466-1_5

Download citation

Publish with us

Policies and ethics