Skip to main content

Materials Processing by Microwave Heating

  • Chapter
  • First Online:
Microwave Chemical and Materials Processing

Abstract

Attempts to use microwaves in materials processing are very old and are comparable to those of microwave heating of food. This chapter discusses the characteristics and advantages of the microwave processing of ceramics and rapid sintering of ceramics and introduces the sintering of inorganic materials with new structures through selective heating by microwaves. In addition, the refining of metals and drying technology of metal films and nano-inks is explained. Characteristics of the microwave method for the synthesis of metallic nanoparticles and quantum dots, together with their effects are described. In addition, the chapter introduces sintering of ceramics with structural features using microwave characteristic heating. The coffee break discusses future developments in microwave ovens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Shimomura, T. Miyazaki, N. Taniguchi, A. Tutiya, Study of ceramics processing. Annual Report, RIKEN, Japan, vol. 48, pp. 11–19

    Google Scholar 

  2. A. von Hippel (ed.), Dielectric Materials and Applications (MIT Technology Press, New York, 1954)

    Google Scholar 

  3. A.C. Metaxas, J.G.P. Binner, Microwave processing of ceramics, in Advanced Ceramic Processing and Technology, vol 1, ed. by J.G.P. Binner (Noyes Publications, Park Ridge, NJ, USA, 1990), pp. 285–362

    Google Scholar 

  4. W.H. Sutton, Microwave processing of ceramic materials. Am. Ceram. Soc. Bull. 68, 376–386 (1989)

    CAS  Google Scholar 

  5. H.R. Roy, S. Komarneni, L.J. Yang, Controlled microwave heating and melting of gels. J. Am. Ceram. Soc. 68, 392–395 (1985)

    Article  CAS  Google Scholar 

  6. C. Leonelli, S. Komarneni, Inorganic syntheses assisted by microwave heating. Inorganics 3, 388–391 (2015)

    Article  Google Scholar 

  7. W.B. Campbell, J.V. Shivers, Microwaves for ceramic process control. Am. Ceram. Soc. Bul. 52, 260–262 (1973)

    Google Scholar 

  8. H.M. Kingston, S.J. Haswell (eds.), Microwave-Enhanced Chemistry (American Chemical Society, Washington D.C., 1997)

    Google Scholar 

  9. W.R. Tinga, A.G. Voss, Microwave Power Engineering (Academic, New York, 1968)

    Google Scholar 

  10. R.R. Menezes, P.M. Souto, R.H.G.A. Kiminami, Microwave hybrid fast sintering of porcelain bodies. J. Mater. Process. Technol. 190, 223–229 (2007)

    Article  CAS  Google Scholar 

  11. M.N. Rahaman, Ceramic Processing and Sintering (Marcel Dekker Inc., 0-8247-9573-3, New York, 1995)

    Google Scholar 

  12. Materials Research Advisory Board, Microwave Processing of Materials, National Research Council, Publication NMAB-473 (National Academy Press, Washington, D. C., 1994)

    Google Scholar 

  13. D.C. Folz, J.H. Booske, D.E. Clark, J.F. Gerling (eds), Microwave and radio frequency applications, in Proceedings from the Third World Congress on Microwave and RF Processing (American Ceramic Society, Westerville, OH, 2003)

    Google Scholar 

  14. H. Takizawa, Microwave non-equilibrium chemistry in inorganic chemistry and materials chemistry. Inst. Elect. Eng. Jpn. 132, 17–19 (2012)

    Article  Google Scholar 

  15. J.D. Katz, Microwave sintering of ceramics. Annu. Rev. Mater. Sci. 22, 153–170 (1992)

    Article  CAS  Google Scholar 

  16. M. Panneerselvam, K.J. Rao, Microwave preparation and sintering of industrially important perovskite oxides: LaMO3 (M = Cr Co, Ni). J. Mater. Chem. 13, 596–601 (2003)

    Google Scholar 

  17. A. Badev, S. Marinel, R. Heuguet, E. Savary, D. Agrawal, Sintering behavior and non-linear properties of ZnO varistors processed in microwave electric and magnetic fields at 2.45 GHz. Acta Mater. 61, 7849–7858 (2013)

    Article  CAS  Google Scholar 

  18. W.B. Harrison, M.R.B. Hanson, B.G. Koepke, Microwave processing and sintering of PZT and PLZT ceramics. Microwave Process. Mater. 124, 279–286 (1988)

    CAS  Google Scholar 

  19. S. Komarneni, E. Breval, R. Roy, Microwave preparation of mullite powders, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 235–238

    Google Scholar 

  20. I. Ahmad, G.T. Chandler, D.E. Clark, Processing of superconducting ceramics using microwave energy, in Microwave Processing of Materials, vol. 124, ed. by W. H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 1988), pp. 239–246

    Google Scholar 

  21. M.K. Krage, Microwave sintering of ferrites. Am. Ceram. Soc. Bull. 60, 1232–1234 (1981)

    CAS  Google Scholar 

  22. K.H. Brosnan, G.L. Messing, D.K. Agrawal, Microwave sintering of alumina at 2.45 GHz. J. Am. Ceram. Soc. 86, 1307–1312 (2003)

    Article  CAS  Google Scholar 

  23. N.W. Schubring, Microwave sintering of alumina spark plug insulators. Technical Report GMR-4471 (General Motors Research Laboratory, 1983), pp. 1–27

    Google Scholar 

  24. W.H. Sutton, Microwave firing of high alumina ceramics, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 287–295

    Google Scholar 

  25. L. Quemeneur, J. Choisnet, B. Raveau, J.M. Thiebaut, G. Roussy, Microwave clinkering with a grooved resonant applicator. J. Am. Ceram. Soc. 66, 855–859 (1983)

    Article  CAS  Google Scholar 

  26. V.K. Varadan, Y. Ma, A. Lakhtakia, W. Varadan, Microwave sintering of ceramics, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 45–57

    Google Scholar 

  27. T.T. Meek, R.D. Blake, J.J. Petrovic, Microwave sintering of Al2O3 and Al2O3–SiC-whisker composites. Ceram. Eng. Sci. Proc. 8, 861–871 (1987)

    Article  CAS  Google Scholar 

  28. T.T. Meek, C.E. Holcomb, N. Dykes, Microwave sintering of some oxide materials using sintering aids. J. Mater. Sci. Lett. 6, 1060–1062 (1987)

    Article  CAS  Google Scholar 

  29. M.A. Janney, H.D. Kimrey, Microwave sintering of alumina at 28 GHz, in Ceramic Transactions, Ceramic Powder Science II B, ed. by G.L. Messing, E.R. Fuller Jr., H. Hausner (American Ceramic Society, Westerville, OH, 1988),pp. 919–924

    Google Scholar 

  30. J.D. Katz, R.D. Blake, J.J. Petrovic, Microwave sintering of alumina-silicon carbide composites at 2.45 and 60 GHz. Ceram. Eng. Sci. Proc. 9, 725–734 (1988)

    Article  CAS  Google Scholar 

  31. Y.L. Tian, M.E. Brodwin, D.L. Johnson, Microwave sintering of ceramics under high gas pressure, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 213–218

    Google Scholar 

  32. R.D. Blake, T.T. Meek, Microwave processed composites. J. Mater. Sci. Lett. 5, 1097–1098 (1986)

    Article  CAS  Google Scholar 

  33. J.D. Katz, R.D. Blake, J.J. Petrovic, H. Scheinberg, Microwave sintering of boron carbide, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 219–226

    Google Scholar 

  34. E.L. Kerner, D.L. Johnson, Microwave plasma sintering of alumina. Am. Ceram. Soc. Bull. 64, 1132–1136 (1985)

    Google Scholar 

  35. P.A. Haas, Heating of uranium oxides in a microwave oven. Am. Ceram. Soc. Bull. 58, 873 (1979)

    CAS  Google Scholar 

  36. T.T. Meek, R.D. Blake, Ceramic-ceramic seals by microwave heating. J. Mater. Sci. Lett. 5, 270–274 (1986)

    Article  CAS  Google Scholar 

  37. H. Fukushima, T. Yamanka, M. Matsui, Microwave heating of ceramics and its application to joining, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 267–272

    Google Scholar 

  38. D. Palaith, R. Silberglitt, C.C.M. Wu, R. Kleiner, E.L. Libelo, Microwave joining of ceramics, in Microwave Processing of Materials, ed. by W.H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 255–266

    Google Scholar 

  39. A.J. Berteaud, J.C. Badot, High temperature microwave heating in refractory materials. J. Microwave Power 11, 315–320 (1976)

    Article  Google Scholar 

  40. Y. Hassler, L. Johansen, Microwave heating of fused quartz to high temperatures in the fabrication process of optical fibers, in Microwave Processing of Materials, ed. by W. H. Sutton, M.H. Brooks, I.J. Chabinsky (Materials Research Society, Pittsburgh, PA, 124, 1988), pp. 273–278

    Google Scholar 

  41. G. Yang, G. Wang, W.H. Hou, Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries. J. Phys. Chem. B 109, 11186–11196 (2005)

    Article  CAS  Google Scholar 

  42. Z.J. Wang, H. Kokawa, H. Takizawa, M. Ichiki, R. Maeda, Low-temperature growth of high-quality lead zirconate titanate thin films by 28 GHz microwave irradiation. Appl. Phys. Lett. 86, 212903–212906 (2005)

    Article  Google Scholar 

  43. K.I. Rybakov, E.A. Olevsky, E.V. Krikun, Microwave sintering: fundamentals and modeling. J. Am. Ceram. Soc. 94, 1003–1020 (2013)

    Article  Google Scholar 

  44. W.H. Sutton, Microwave processing of ceramics materials. Am. Ceram. Soc. Bull. 68, 376–388 (1987)

    Google Scholar 

  45. T. Endo, J. Fukushima, Y. Hayashi, H. Takizawa, Fabrication of (Zn1−x Al x O)5In2O3 by microwave irradiation and thermoelectric characterization. J. Ceram. Soc. Jpn. 121, 416–421 (2013)

    Google Scholar 

  46. S. Horikoshi, N. Shinohara, H. Takizawa, J. Fukushima, Microwave Chemistry—Reaction, Processing and Application (Sankyo Publishing Co. Ltd., 2013)

    Google Scholar 

  47. R. Roy, D. Agrawal, J.P. Cheng, M. Mathis, Microwave processing: triumph of applications-driven science in WC-composites and ferroic titanates. Ceram. Trans. 80, 3–26 (1997)

    CAS  Google Scholar 

  48. R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bosies in a microwave field. Nature 399, 668–670 (1999)

    Article  CAS  Google Scholar 

  49. R.M. Anklekar, D.K. Agrawal, R. Roy, Microwave sintering and mechanical properties of P/M steel. Powder Metall. 44, 355–362 (2001)

    Article  CAS  Google Scholar 

  50. R.M. Anklekar, K. Bauer, D. Agrawal, R. Roy, Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts’. Powder Metall. 48, 39–46 (2005)

    Article  CAS  Google Scholar 

  51. http://www.azom.com/article.aspx?ArticleID=937

  52. S. Takayama, G. Link, S. Miksch, M. Sato, J. Ichikawa, M. Thumm, Millimetre wave effects on sintering behavior of metal powder compacts. Powder Metall. 46, 274–280 (2006)

    Article  Google Scholar 

  53. D. Demirskyi, A. Ragulya, D. Agrawal, Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceramic Intl. 37, 505–512 (2011)

    Article  CAS  Google Scholar 

  54. D. Agrawal, Metal parts from microwaves. Mater. World 7, 672–673 (1999)

    CAS  Google Scholar 

  55. M. Gupta, W.L.E. Wong, Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scripta Mater. 52, 479–483 (2005)

    Article  CAS  Google Scholar 

  56. A. Upadhyaya, S.K. Tiwari, P. Mishra, Microwave sintering of W–Ni–Fe alloy. Scripta Mater. 56, 5–8 (2007)

    Article  CAS  Google Scholar 

  57. W.L.E. Wong, M. Gupta, Development of Mg/Cu nanocomposites using microwave assisted rapid heating. Composites Sci. Technol. 67, 1541–1552 (2007)

    Article  CAS  Google Scholar 

  58. R.M. Anklekar, K. Bauer, D. Agrawal, R. Roy, Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall. 48(1), 39–46 (2005)

    Article  CAS  Google Scholar 

  59. S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces. Scripta Mater. 54, 2179–2183 (2006)

    Article  CAS  Google Scholar 

  60. K. Rajkumar, S. Aravindan, Tribological studies on microwave sintered copper-carbon nanotube composites. Wear 270, 613–621 (2011)

    Article  CAS  Google Scholar 

  61. S.D. Luo, M. Yan, G.B. Schaffer, M. Qian, Sintering of titanium in vacuum by microwave radiation. Metall. Mater. Trans. A 42, 2466–2474 (2011)

    Article  CAS  Google Scholar 

  62. S. Takayama, Y. Saito, M. Sato, T. Nagasaka, T. Muroga, Y. Ninomiya, Sinteirng behavior of metal powders involving microwave-enhanced chemical reaction. J. Appl. Phys. 45, 1816–1822 (2006)

    Article  CAS  Google Scholar 

  63. A. Mondal, A. Upadhyaya, D. Agrawal, Microwave and conventional sintering of premixed and prealloyed tungsten heavy alloys, in Materials Science and Technology (MS&T) 2008, Pittsburgh, Pennsylvania, 5–9 October 2008, pp. 2502–2515

    Google Scholar 

  64. A. Mondal, A. Upadhyaya, D. Agrawal, Microwave and conventional sintering of 90W-7Ni-3Cu alloys with premixed and prealloyed binder phase. Mater. Sci. Eng. A 527, 6870–6878 (2010)

    Article  Google Scholar 

  65. S.-D. Luo, J.-H. Yi, Y.-L. Guo, Y.-D Peng, L.-Y. Li, J.-M. Ran, Microwave sintering W–Cu composites: analyses of densification and microstructural homogenization. J. Alloy Compd. 473, L5–L9 (2009)

    Google Scholar 

  66. A. Upadhyaya, G. Sethi, Effect of heating mode on the densification and microstructural homogenization response of premixed bronze. Scripta Mater. 56, 469–472 (2007)

    Article  CAS  Google Scholar 

  67. Y. Zhou, K. Wang, R. Liu, X.P. Wang, C.S. Liu, Q.F. Fang, High performance tungsten synthesized by microwave sintering method. Int. J. Refract. Metals Hard Mater. 34, 13–17 (2012)

    Article  Google Scholar 

  68. R.R. Zheng, Y. Wu, S.L. Liao, A.H. Wang, Microstructure and mechanical properties of Al/(Ti, W)C composites prepared by microwave sintering. J. Alloy. Compd. 590, 168–175 (2014)

    Article  CAS  Google Scholar 

  69. K. Wang, X.P. Wang, R. Liu, T. Hao, T. zhang, C.S. Liu, Q.F. Fang, The study on the microwave sintering of tungsten at relatively low temperature, J. Nuclear Mater. 431, 206–211 (2012)

    Google Scholar 

  70. C. Padmavathi, A. Upadhyaya, D. Agrawal, Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy. Mater. Chem. Phys. 130, 449–457 (2011)

    Article  CAS  Google Scholar 

  71. M.M. Mahmoud, G. Link, M. Thumm, The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J. Alloy. Compd. 627, 231–237 (2015)

    Article  CAS  Google Scholar 

  72. H. Taira, Y. Saito, K. Sawano, K. Goda, K. Asano, I. Takita, Microwave drying of monolithic refractories-1. TAIKABUTSU 60, 512–521 (2007)

    Google Scholar 

  73. S. Katayose, T. Miyazaki, Y. Hayashi, H. Takizawa, Synthesis of natural superlattice structure in the binary ZnO–Fe2O3 system by microwave irradiation. J. Ceram. Soc. Jpn. 118, 387–389 (2010)

    Article  CAS  Google Scholar 

  74. D. Nagao, J. Fukushima, Y. Hayashi, H. Takizawa, Synthesis of homologous compounds Fe2O3(ZnO) m (m = 6, 8, 34) by various selective microwave heating conditions. Ceram. Int. 41, 14021–14028 (2015)

    Google Scholar 

  75. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  76. D. Mehandjiev, A. Naydenov, G. Ivanov, Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl. Catal. A 206, 13–18 (2001)

    Article  CAS  Google Scholar 

  77. B.B. Nelson-Cheeseman, R.V. Chopdekar, J.M. Iwata, M.F. Toney, E. Arenholz, Y. Suzuki, Modified magnetic ground state in NiMn2O4 thin films. Phys. Rev. B 82, 144419–144426 (2010)

    Article  Google Scholar 

  78. H. Goto, J. Fukushima, H. Takizawa, Control of magnetic properties of NiMn2O4 by a microwave magnetic field under air. Materials 9, 169–176 (2016)

    Article  Google Scholar 

  79. C.A. Pickles, Microwaves in extractive metallurgy: part 2—a review of applications. Mineral. Eng. 22, 1112–1118 (2009)

    Article  CAS  Google Scholar 

  80. R.K. Amankwah, C.A. Pickles, Microwave calcination and sintering of manganese carbonate ore. Can. Metall. Q. 44, 239–248 (2005)

    Article  CAS  Google Scholar 

  81. K. Hara, M. Hayashi, M. Sato, K. Nagata, Continuous pig iron making by microwave heating with 12.5 kW at 2.45 GHz. J. Microwave Power Electromagn. Energy 45, 137–147 (2011)

    Google Scholar 

  82. N. Yoshikawa, E. Ishizuka, K. Mashiko, S. Taniguchi, Carbon reduction kinetics of NiO by microwave heating of the separated electric and magnetic fields. Metall. Mater. Trans. B Process Metall. Mater. Proc. Sci. 38, 863–868 (2007)

    Google Scholar 

  83. J. Fukushima, H. Takizawa, Enhanced reduction of copper oxides via internal heating, selective heating, and cleavage of Cu–O bond by microwave magnetic-field irradiation. Mater. Chem. Phys. 172, 47–53 (2016)

    Article  CAS  Google Scholar 

  84. H. Takizawa, J. Fukushima, Titanium nitride coating by microwave. Kinzoku 83, 694–699 (2013)

    CAS  Google Scholar 

  85. S. Komarneni, R. Roy, Titania gel spheres by a new sol-gel process. Mater. Lett. 3, 165–167 (1985)

    Article  CAS  Google Scholar 

  86. S. Komarneni, R. Roy, Q.H. Li, Microwave- hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 27, 1393–1405 (1992)

    Article  CAS  Google Scholar 

  87. W. Lojkowski, C. Leonelli, T. Chudoba, J. Wojnarowicz, A. Majcher, A. Mazurkiewicz, High-energy low-temperature technologies for the synthesis of nanoparticles: microwaves and high pressure. Inorganics 2, 606–619 (2014)

    Article  CAS  Google Scholar 

  88. J. Prado-Gonjal, R. Schmidt, E. Morán, Microwave-assisted routes for the synthesis of complex functional oxides. Inorganics 3, 101–117 (2015)

    Article  CAS  Google Scholar 

  89. S. Cho, S.-H. Jung, K.-H. Lee, Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J. Phys. Chem. C 112, 12769–12776 (2008)

    Article  CAS  Google Scholar 

  90. M.S. El-Shall, V. Abdelsayed, H.M.A. Hassan, S.K. Abd El Rahman, K.M. Abouzeid, Q. Dai, P. Afshani, F. Gupton, A.R. Siamaki, Z. Abdullah, M. Alothman, H.Z. Alkhathlan, Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation. US Patent Application, US2013/0211106 A1, 15 August 2013

    Google Scholar 

  91. R. Trujillano, E. Rico, M.A. Vicente, V. Rives, L. Bergalaouis, S.B. Chaabene, A.D. Ghorbel, Microwave-assisted synthesis of Fe3+ saponites. Characterization by x-ray diffraction and FT-IR spectroscopy. Rev. Soc. Esp. Miner. 11, 189–190 (2009)

    Google Scholar 

  92. Z. Derikvand, F. Farzaneh, Synthesis, characterization and catalytic behavior of special type of silico-alumino-phosphate with opal structure. J. Sci. (Iran) 14, 235–238 (2003)

    Google Scholar 

  93. I. Bilecka, M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358–1374 (2010)

    Article  CAS  Google Scholar 

  94. N.N. Mallikarjuna, R.S. Varma, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst. Growth Des. 7, 686–690 (2007)

    Article  CAS  Google Scholar 

  95. J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 127, 15791–15800 (2005)

    Article  CAS  Google Scholar 

  96. S. Horikoshi, H. Abe, K. Torigoe, M. Abe, N. Serpone, Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors. Nanoscale 2, 1441–1447 (2010)

    Article  CAS  Google Scholar 

  97. S. Horikoshi, N. Serpone (eds.), Microwaves in Nanoparticle Synthesis: Fundamentals and Applications (Wiley-VCH Verlag GmbH & Co., Germany, 2013)

    Google Scholar 

  98. Y. Tsukahara, T. Nakamura, T. Kobayashi, Y. Wada, Homogeneous Ag particle formation confirmed by real-time in situ surface-enhanced Raman scattering measurements under microwave irradiation. Chem. Lett. 35, 1396–1397 (2006)

    Article  CAS  Google Scholar 

  99. E. Smith, G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley and Sons Ltd., Chichester, UK, 2005), p. 210

    Google Scholar 

  100. M.A. Herrero, J.M. Kremsner, C.O. Kappe, Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem. 73, 36–47 (2008)

    Article  CAS  Google Scholar 

  101. S. Wiegand, Thermal diffusion in liquid mixtures and polymer solutions. J. Phys. Condens. Matter 16, R357–R379 (2004)

    Article  CAS  Google Scholar 

  102. J.-S. Schanche, Microwave synthesis solutions from personal chemistry. Molec. Diversity 7, 291–298 (2003)

    Article  Google Scholar 

  103. S. Kundu, L. Peng, H. Liang, A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation. Inorg. Chem. 47, 6344–6352 (2008)

    Article  CAS  Google Scholar 

  104. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Microwave-assisted synthesis of metallic nanostructures in solution. Chem. Eur. J. 11, 440–452 (2005)

    Article  CAS  Google Scholar 

  105. T. Yamamoto, H. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Morphology-control in microwave-assisted synthesis of silver particles in aqueous solutions. Bull. Chem. Soc. Jpn. 77, 757–761 (2004)

    Article  CAS  Google Scholar 

  106. M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, M. Nishio, Crystal structures and growth mechanisms of Au@Ag core—shell nanoparticles prepared by the microwave-polyol method. Cryst. Growth Des. 6, 1801–1807 (2006)

    Article  CAS  Google Scholar 

  107. Y. He, H.-T. Lu, L.-M. Sai, W.-Y. Lai, Q.-L. Fan, L.-H. Wang, W. Huang, Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J. Phys. Chem. B 110, 13370–13374 (2006)

    Article  CAS  Google Scholar 

  108. Y. Wang, Z. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J. Phys. Chem. B 108, 15461–15469 (2004)

    Article  CAS  Google Scholar 

  109. H. Bao, Y. Gong, Z. Li, M. Gao, Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core—shell structure. Chem. Mater. 16, 3853–3859 (2004)

    Article  CAS  Google Scholar 

  110. M. Nishioka, M. Miyakawa, H. Kataoka, H. Koda, K. Sato, T.M. Suzuki, Facile and continuous synthesis of Ag@SiO2 core–shell nanoparticles by a flow reactor system assisted with homogeneous microwave heating. Chem. Lett. 40, 1204–1206 (2011)

    Article  CAS  Google Scholar 

  111. W. Ehrfeld, V. Hessel, H. Lowe, Microreactor (Wiley-VCH Verlag, GmbH, Weinheim, Germany, 2001)

    Google Scholar 

  112. S. Horikoshi, T. Sumi, N. Serpone, A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles. Chem. Eng. Proc. 73, 59–66 (2013)

    Article  CAS  Google Scholar 

  113. National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges (National Academies Press, Washington, D.C., 1991)

    Google Scholar 

  114. M. Tsuji, M. Hashimoto, T. Tsuji, Fast preparation of nano-sized nickel particles under microwave irradiation without using catalyst for nucleation. Chem. Lett. 31, 1232–1233 (2002)

    Google Scholar 

  115. E.K. Liu, P.W. Huang, Y.C. Chang, C.J. Ko, T.C. Chu, Formation of silver nanorods by microwave heating in the presence of gold seeds. J. Cryst. Growth 273, 439–445 (2005)

    Google Scholar 

  116. F.K. Liu, P.W. Huang, T.C. Chu, C.J. Ko, Gold seed-assisted synthesis of silver nanomaterials under microwave heating. Mater. Lett. 59, 940–944 (2005)

    Google Scholar 

  117. F. Gao, Q. Lu, S. Komarneni, Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem. Mater. 17, 856–860 (2005)

    Google Scholar 

  118. B. Hu, S.B. Wang, K. Wang, M. Zhang, S.H. Yu, Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 112, 11169–11174 (2008)

    Google Scholar 

  119. T. Zhao, J.B. Fan, J. Cui, J.H. Liu, X.B. Xu, M.Q. Zhu, Microwave-controlled ultrafast synthesis of uniform silver nanocubes and nanowires. Chem. Phys. Lett. 501, 414–418 (2011)

    Google Scholar 

  120. Y.J. Zhu, X.L. Hu, Microwave-assisted polythiol reduction method: a new solid-liquid route to fast preparation of silver nanowires. Mater. Lett. 58, 1517–1519 (2004)

    Google Scholar 

  121. S. Kundu, H. Liang, Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds. Langmuir 24, 9668–9674 (2008)

    Google Scholar 

  122. F.K. Liu, C.J. Ker, Y.C. Chang, F.H. Ko, T.C. Chu, B.T. Dai, Synthesis of nanoparticles and one-dimensional nanomaterials. J. Appl. Phys. Part 1(42), 4152–4158 (2003)

    Google Scholar 

  123. S. Kundu, K. Wang, H. Liang, Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy. J. Phys. Chem. C 113, 5157–5163 (2009)

    Google Scholar 

  124. S. Horikoshi, H. Abe, T. Sumi, K. Torigoe, H. Sakai, N. Serpone, M. Abe, Microwave frequency effect in the formation of Au nanocolloids in polar and non-polar solvents. Nanoscale 3, 169–172 (2011)

    Google Scholar 

  125. Y.J. Zhu, X.L. Hu, Microwave-polyol preparation of single-crystalline gold nanorods and nanowires. Chem. Lett. 32, 1140–1141 (2003)

    Google Scholar 

  126. M. Fernandez-Garcia, A. Martinez- Arias, J.C. Hanson, J.A. Rodriguez, Certain aspects of the formation and identification of nanosized oxide components in heterogeneous catalysts prepared by different methods. Chem. Rev. 104, 4063–4104 (2004)

    Google Scholar 

  127. M. Nishioka, M. Miyakawa, Y. Daino, H. kataoka, H. Koda, K. Sato, T.M. Suzuki, Characterization of Pt nanoparticles encapsulated in Al2O3 and their catalytic efficiency in propene hydrogenation. Chem. Lett. 40, 1327–1329 (2011)

    Google Scholar 

  128. S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A.S. Bhalla, Microwave- and conventional-hydrothermal synthesis of CuS, SnS and ZnS: Optical properties. Langmuir 18, 5959–5962 (2002)

    Google Scholar 

  129. S.K. Mehta, S. Gupta, Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. J. Appl. Electrochem. 41, 1407–1417 (2011)

    Google Scholar 

  130. Y. Yu, Y. Zhao, T. Huang, H. Liu, Microwave-assisted synthesis of palladium nanocubes and nanobars. Mater. Res. Bull. 45, 159–164 (2010)

    Google Scholar 

  131. Y.J. Zhu, W.W. Wang, R.J. Qi, X.L. Hu, Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. Angew. Chem. Int. Ed. 43, 1410–1414 (2004)

    Google Scholar 

  132. H. Zhu, C. Zhang, Y. Yin, Electrochemical preparation of biomolecule stabilized copper nanoparticles decorated reduced graphene oxide for the sensitive and selective determination of hydrogen peroxide. J. Cryst. Growth 270, 722–728 (2004)

    Google Scholar 

  133. M. Blosi, S. Albonetti, M. Dondi, C. Martelli, G. Baldi, Microwave-assisted polyol synthesis of Cu nanoparticles. J. Nanopart. Res. 13, 127–138 (2011)

    Google Scholar 

  134. T. Nakamura, Y. Tsukahara, T. Sakata, H. Mori, Y. Kanbe, H. Bessho, Y. Wada, Facile synthesis of bimetallic Cu–Ag nanoparticles under microwave irradiation and their oxidation resistance. Bull. Chem. Soc. Jpn. 80, 224–232 (2007)

    Google Scholar 

  135. C. Vollimer, E. Redel, K.A. Shandi, R. Thomann, H. Manyar, C. Hardacre, C. Janiak, Microwave Irradiation for the Facile Synthesis of Transition-Metal Nanoparticles (NPs) in Ionic Liquids (ILs) from Metal–Carbonyl Precursors and Ru-, Rh-, and Ir-NP/IL Dispersions as Biphasic Liquid–Liquid Hydrogenation. Chem. Eur. J. 16, 3849–3858 (2010)

    Google Scholar 

  136. Y. Zhao, J.J. Zhu, J.M. Hong, N. Bian, H.Y. Chen, Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur. J. Inorg. Chem. 20, 4072–4080 (2004)

    Google Scholar 

  137. H. Wang, J.-Z. Xu, J.-J. Zhu, H.-Y. Chen, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 244, 88–94 (2002)

    Google Scholar 

  138. D.P. Volanti, M.O. Orlandi, J. Andres, E. Longo, Microwave hydrothermal and solvothermal processing of materials and compounds. Cryst. Eng. Commun. 12, 1696–1699 (2010)

    Google Scholar 

  139. X.-H. Liao, J.-J. Zhu, H.-Y. Chen, Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater. Sci. Eng. B 85, 85–89 (2001)

    Google Scholar 

  140. K. Ding, Z. Miao, Z. Liu, Z. Zhang, B. Han, G. An, S. Miao, Y. Xie, Ionic liquid-assisted synthesis of carbon nanotube/platinum nanocomposites. J. Am. Chem. Soc. 129, 6362–6363 (2007)

    Google Scholar 

  141. T. Suprabha, H. Roy, J. Thomas, K.P. Kumar, S. Mathew, Microwave-assisted synthesis of titania nanocubes, nanospheres and nanorods for photocatalytic dye degradation. Nanoscale Res. Lett. 4, 144–152 (2009)

    Google Scholar 

  142. A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. J. Am. Ceram. Soc. 88, 2639–2641 (2005)

    Google Scholar 

  143. W. Xiao, H. Gu, D. Li, D. Chen, X. Deng, Z. Jiao, J. Lin, Microwave-assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents. J. Mag. Mag. Mater. 324, 488–494 (2012)

    Google Scholar 

  144. X. Hu, J.C. Yu, Phase transformation and shape evolution of iron oxide nanocrystals synthesized in the ethylene glycol-water system. Adv. Funct. Mater. 18, 880–887 (2008)

    Google Scholar 

  145. X. Li, H. Li, R. Cao, Facile fabrication of pure α-Fe2O3 nanoparticles via forced hydrolysis using microwave-assisted esterification and their sensing property. J. Am.Ceram. Soc. 92, 2188–2191 (2009)

    Google Scholar 

  146. T. Muraliganth, A.V. Murugan, A. Manthiram, Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. Chem. Commun. 47, 7360–7362 (2009)

    Google Scholar 

  147. X. Hu, J. Yu, Microwave-assisted snthesis of a superparamagnetic surface-functionalized porous Fe3O4/C nanocomposite. Chem. Asian J. 1, 605–610 (2006)

    Google Scholar 

  148. H. Hu, H. Yang, P. Huang, D. Cui, Y. Peng, J. Zhang, F. Lu, J. Lian, D. Shi, Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Chem. Commun. 46, 3866–3868 (2010)

    Google Scholar 

  149. C.R. Patra, A. Gedanken, Rapid synthesis of nanoparticles of hexagonal type In2O3 and spherical type Tl2O3 by microwave irradiation. New J. Chem. 28, 1060–1065 (2004)

    Google Scholar 

  150. J. Jouhannaud, J. Rossignol, D. Stuerga, Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis. J. Solid State Chem. 181, 1439–1444 (2008)

    Google Scholar 

  151. Y. Tao, F.H. Gong, H.P. Wu, G.L. Tao, Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents. Mater. Chem. Phys. 112, 973–976 (2008)

    Google Scholar 

  152. M. Zawadzki, Preparation and characterization of ceria nanoparticles by microwave-assisted solvothermal process. J. Alloys Compd. 454, 347–351 (2008)

    Google Scholar 

  153. O. Palchik, J.-J. Zhu, A. Gedanken, Microwave assisted preparation of binary oxide nanoparticles. J. Mater. Chem. 10, 1251–1254 (2000)

    Google Scholar 

  154. S. Anandan, J.J. Wu, Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent. Mater. Lett. 63, 2387–2389 (2009)

    Google Scholar 

  155. D.S. Raj, T. Krishnakumar, R. Jayaprakash, N. Donato, M. Latino, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for sensing applications. Sci. Adv. Mater. 2, 432–437 (2010)

    Google Scholar 

  156. W.W. Wang, Microwave-induced polyol-process synthesis of MIIFe2O4 (M = Mn, Co) nanoparticles and magnetic property. Mater. Chem. Phys. 108, 227–231 (2008)

    Google Scholar 

  157. E.K. Nyutu, C.H. Chen, P.K. Dutta, S.L. Suib, Synthesis and characterization of Barium Titanate, Calcium Titanate and Strontium Titanate thin films. J. Phys. Chem. C 112, 9659–9667 (2008)

    Google Scholar 

  158. O. Palchik, R. Kerner, A. Gedanken, A.M. Weiss, M.A. Slifkin, V. Palchik, Microwave-assisted polyol method for the preparationof CdSe “nanoballs”. J. Mater. Chem. 11, 874–878 (2001)

    Google Scholar 

  159. Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Microwave-assisted size control of CdS nanocrystallites. J. Mater. Chem. 11, 1936–1940 (2001)

    Google Scholar 

  160. S. Karan, B. Mallik, Tunable visible-light emission from CdS nanocrystallites prepared under microwave irradiation. J. Phys. Chem. C 111, 16734–16741 (2007)

    Google Scholar 

  161. Q. Song, X. Ai, T. Topuria, P.M. Rice, F.H. Alharbi, A. Bagabas, M. Bahattab, J.D. Bass, H.-C. Kim, J.C. Scott, R.D. Miller, Microwave-assisted synthesis of monodispersed CdTe nanocrystals. Chem. Commun. 46, 4971–4973 (2010)

    Google Scholar 

  162. L. Li, H. Qian, J. Ren, Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 4, 528–530 (2005)

    Google Scholar 

  163. T. Ding, J.-J. Zhu, Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Mater. Sci. Eng. B 100, 307–313 (2003)

    Google Scholar 

  164. M.A. Sliem, A. Chemseddine, U. Bloeck, R.A. Fischer, PbSe nanocrystal shape development: oriented attachment at mild conditions and microwave assisted growth of nanocubes. Cryst. Eng. Commun. 13, 483–488 (2011)

    Google Scholar 

  165. S. Ortíz, I. Gómez, P. Elizondo, J. Cavazos, Highly luminescent nanostructures of CdS and ZnS prepared by microwaves heating: effect of sulphide concentration. Phys. Status Solid C 7, 2683–2687 (2010)

    Google Scholar 

  166. J. Huang, C. Xia, L. Cao, X. Zeng,One-pot synthesis of Copper−Indium Sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes. Mater. Sci. Eng. B 150, 187–193 (2008)

    Google Scholar 

  167. X. Hu, J. Gong, L. Zhang, J.C. Yu, Humidity sensing properties of CeO2–NiO nanocomposite materials. Adv. Mater. 20, 4845–4850 (2008)

    Google Scholar 

  168. R. He, X.-F. Qian, J. Yin, H.-A. Xi, L.-J. Bian, Z.-K. Zhu, Colloids Surf. A 220, 151–157 (2003)

    Google Scholar 

  169. J. Liang, Z. Deng, X. Jiang, F. Li, Y. Li, Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 41, 3602–3604 (2002)

    Google Scholar 

  170. H.F. Qian, X. Qiu, L. Li, J.C. Ren, Hydrothermal synthesis of nanocrystalline ZnSe: An in situ. J. Phys. Chem. B 110, 9034–9040 (2006)

    Google Scholar 

  171. A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee, Synthesis of hexagonal WO3. J. Mater. Chem. 20, 1683–1690 (2010)

    Google Scholar 

  172. N.L. Houx, G. Pourroy, F. Camerel, M. Comet, D. Spitzer, Comparison of the morphology and structure of WO3. J. Phys. Chem. C 114, 155–161 (2010)

    Google Scholar 

  173. J.H. Ryu, C.S. Lima, W.C. Oh, K.B. Shim, J. Ceram. Process. Res. 5, 316–320 (2004)

    Google Scholar 

  174. R. Harpeness, A. Gedanken, A simple fast microwave-assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction-mixture. New J. Chem. 27, 1191–1193 (2003)

    Google Scholar 

  175. R. Harpeness, A. Gedanken, A.M. Weiss, M.A. Slifkin, Microwave-assisted synthesis of nanosized MoSe. J. Mater. Chem. 13, 2603–2606 (2003)

    Google Scholar 

  176. B. Babita, M.N. Nadagouda, R.S. Varma, Nano-catalysts with magnetic core: Sustainable options for greener synthesis.  J. Phys. Chem. C 112, 18399–18404 (2008)

    Google Scholar 

  177. I. Bilecka, L. Luo, I. Djerdj, M.D. Rossell, M. Jagodic, Z. Jaglicic, Y. Masubuchi, S. Kikkawa, M. Niederberger, Microwave-assisted nonaqueous sol−gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals. J. Phys. Chem. C 115, 1484–1495 (2011)

    Google Scholar 

  178. L. Zhenyu, X. Guangliang, Z. Yalin, Rapid synthesis of dittmarite by  microwave-assisted hydrothermal method. Nanoscale Res. Lett. 2, 40–43 (2007)

    Google Scholar 

  179. H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M.A. Slifkin, A. M. Weiss, Y. R. Hacohen, Preparation of Cd1-xZnxSe Using Microwave-Assisted Polyol Synthesis. Inorg. Chem. 40, 4814–4815 (2001)

    Google Scholar 

  180. C. Lorbeer, J. Cybinska, A.V. Mudring, Facile preparation of quantum cutting GdF3 :  Eu3+. Chem. Commun. 46, 571–573 (2010)

    Google Scholar 

  181. M. Valodkar, S. Modi, A. Pal, S. Thakore, Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach. Mater. Res. Bul. 46, 384–389 (2011)

    Google Scholar 

  182. R. Harpeness, A. Gedanken, Preparation of bimetallic palladium-platinum colloids in organic solvent by solvent extraction-reduction. Langmuir 20, 3431–3434 (2004)

    Google Scholar 

  183. H. Zhang, Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, C. Cai, J. Phys. Chem. C 114, Pd@Pt core−shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. 11861–11867 (2010)

    Google Scholar 

  184. Y. He, H.T. Lu, L.M. Sai, Y.Y. Su, M. Hu, C.H. Fan, W. Huang, L.H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv. Mater. 20, 3416–3421 (2008)

    Google Scholar 

  185. W. Schumacher, A. Nagy, W.J. Waldman, P.K. Dutta, Direct synthesis of aqueous CdSe/ZnS-based quantum dots using microwave irradiation. J. Phys. Chem. C 113, 12132–12139 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Horikoshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horikoshi, S., Schiffmann, R.F., Fukushima, J., Serpone, N. (2018). Materials Processing by Microwave Heating. In: Microwave Chemical and Materials Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-6466-1_10

Download citation

Publish with us

Policies and ethics