Skip to main content

Stress Response of Phycobiliproteins

  • Chapter
  • First Online:

Abstract

Phycobiliproteins (PBPs) are water-soluble, brilliantly colored pigmented protein complexes functioning as predominant accessory light-harvesting complexes to harvest the photonic energy of sunlight for photosynthesis. In the past few years, PBPs contribute a major role in the development of commercial colored food products, nutraceuticals, and biotechnological products. They are widely used in pharmaceutical, fluorescent, and cosmetic industry for utilization of brilliant color property of PBPs in various commercial and scientific products. Recently, it has been approved for antioxidant, anti-inflammatory, neuroprotective, and hepatoprotective properties for clinical application. Cyanobacteria have the ability to regulate the composition and property of PBPs in response to various abiotic environmental signals like nutrient availability, light intensity, and temperature. Abiotic stress plays an important role in sustainable production of PBPs from cyanobacteria. In this chapter, we describe certain abiotic stress that has effects on composition of PBPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue green algae. Arch Mikrobiol 69:114–120

    Article  CAS  PubMed  Google Scholar 

  • Anderson GR, Jordan JV (1961) Boron: a non-essential growth factor for Azotobacter chroococcum. Soil Sci 92:113–116

    Article  CAS  Google Scholar 

  • Atri N, Rai LC (2003) Differential responses of three cyanobacteria to UV-B. Cd J Microbiol Biotech 13:544–551

    CAS  Google Scholar 

  • Babu GS, Hans RK, Singh J, Viswanathan PN, Joshi PC (2001) Effect of lindane on the growth and metabolic activities of cyanobacteria. Ecotoxicol Environ Saf 48:219–221

    Article  Google Scholar 

  • Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronichf S, Tourpali K (2015) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 14:19–52

    Article  CAS  PubMed  Google Scholar 

  • Barak P, Helmke PA (1999) The chemistry of Zn. In: Robson AD (ed) Zn in soils and plants. Developments in plants and soils sciences. Kluwer Academic Publishers, Dordrecht, pp 1–13

    Google Scholar 

  • Battah MG, Shabana EF, Kobbia JA, Eldel HM (2001) Differential effects of thiobencarb toxicity on the growth and photosynthesis of Anabaena variabilis with changes in phosphate level. Ecotoxicol Environ Saf 49:235–239

    Article  CAS  PubMed  Google Scholar 

  • Belkin S, Boussiba S (1991) High internal pH conveys ammonia resistance in Spirulina Platensis. Bioresour Technol 38:167–169

    Article  CAS  Google Scholar 

  • Bertrand M, Guary JC (2002) How plants adopt their physiology to an excess of metals. In: Pessarakli M (ed) Handbook of plant and crop physiology, 2nd edn. Marcel Dekker, New York, pp 751–761

    Google Scholar 

  • Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stresses. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 397–442

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Book  Google Scholar 

  • Bryant DA (1987) The cyanobacterial photosynthetic apparatus: comparisons to those of higher plants and photosynthetic bacteria. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Department of Fisheries and Oceans, Ottawa, pp 423–500

    Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castlets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127

    Article  CAS  Google Scholar 

  • Carnicas E, Jimenez C, Niell FX (1999) Effects of changes of irradiances on the pigment composition of Gracilaria tenuistipitata var. Liui Zhang et Xia. J Photochem Photobiol B 50:149–158

    Article  CAS  Google Scholar 

  • Casarett L, Doull J (1980) Toxicology, 2nd edn. Macmillan Publishing Co, New York, pp 401–611

    Google Scholar 

  • Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum a prospective phycobiliprotein producing strain. J Appl Phycol 19:537–544

    Article  CAS  Google Scholar 

  • Chaney RL (1993) Zn is soils and plants. In: Robson AD (ed) Developments in plant and soil sciences. Springer, Netherlands, pp 45–57

    Google Scholar 

  • Chen LZ, Wang GH, Hong S, Liu A, Li C, Liu YD (2008) UV-B induced oxidative damage and protective role of exopolysaccharide in desert cyanobacterium Microcoleus vaginatus. J Inter Plant 1:7444–7909

    Google Scholar 

  • Chukhutsina V, Bersanini L, Aro EM, van Amerongen H (2015) Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. Sci Rep 5:14193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier JL, Grossman AR (1994) A small peptide triggers complete degradation of light harvesting phycobiliproteins in nutrients deprived cyanobacteria. EMBO J 13:1039–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csatorday K, Gombos Z, Szalontai B (1984) Manganese and cobalt toxicity in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 81:476–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döhler G (1986) Effects of UV-B radiation on the nitrogen metabolism of several marine diatoms. J Plant Physiol 118:391–400

    Article  Google Scholar 

  • Franklin LA, Krabs G, Kuhlenkamp P (2002) Blue light and UV radiation control the synthesis of mycosporine like amino acids in Chondrus crispus (Florideophyceae). J Phycol 37:257–270

    Article  Google Scholar 

  • Gao K, Yu H, Brown MT (2007) Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. J Photochem Photobiol B Biol 89:117–124

    Article  CAS  Google Scholar 

  • Gerloff GC (1968) The comparative boron nutrition of several green and blue-green algae. Physiol Plant 21:369–377

    Article  CAS  Google Scholar 

  • Glazer AN (1989) Light guides. J Biol Chem 264:1–4

    CAS  PubMed  Google Scholar 

  • Glazer AN (1994) Adaptive variations in phycobilisome structure. Adv Mol Cell Biol 10:119–149

    Article  CAS  Google Scholar 

  • Godinez-Ortega JL, Snoeijs P, Robledo D, Freile-Pelegrin Y, Pedersen M (2008) Growth and pigment composition in the red algae Halymenia floresii cultured under different light qualities. J Appl Phycol 20:253–260

    Article  CAS  Google Scholar 

  • Grossman AR, Schaer M, Chiang G, Collier J (1993) Environmental effects on the light harvesting complex of cyanobacteria. J Bacteriol 175:575–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häder D-P, Helbling EW, Williamson CE, Worrest RC (2011) Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 10:242–260

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford university press, Oxford

    Google Scholar 

  • He YY, Häder D-P (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736

    Article  CAS  PubMed  Google Scholar 

  • Hemlata, Fatma T (2009) Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bull Environ Contam Toxicol 83:509–515

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Lee CG (2008) Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC 6701. Biotechnol Bioprocess Eng 13:491–498

    Article  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910–920

    Article  CAS  PubMed  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F (1993) Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079

    CAS  Google Scholar 

  • Johnson EM, Kumar K, Das D (2014) Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour Technol 166:541–547

    Article  CAS  PubMed  Google Scholar 

  • Kannaujiya VK, Sinha RP (2015) Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats. Protoplasma 252:1551–1561

    Article  CAS  PubMed  Google Scholar 

  • Kannaujiya VK, Sinha RP (2017a) Detection of free thiols and fluorescence response of phycoerythrin chromophore after ultraviolet-B radiation stress. J Fluoresc 27:561–567

    Article  CAS  PubMed  Google Scholar 

  • Kannaujiya VK, Sinha RP (2017b) Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. Protoplasma 254:423–433

    Article  CAS  PubMed  Google Scholar 

  • Kannaujiya VK, Rastogi RP, Sinha RP (2014a) GC constituents and relative codon expressed amino acid composition in cyanobacterial phycobiliproteins. Gene 546:162–171

    Article  CAS  PubMed  Google Scholar 

  • Kannaujiya VK, Richa, Sinha RP (2014b) Peroxide scavenging potential of ultraviolet-B-absorbing mycosporine-like amino acids isolated from a marine red alga Bryocladia sp. Front Environ Sci 2:1–8

    Google Scholar 

  • Kerr JB, McElory CT (1993) Evidence for large upwards trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Terashima I (2014) Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photochem Photobiol B Biol 137:89–99

    Article  CAS  Google Scholar 

  • Kramlich JC, Linak WP (1994) Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems. Prog Energy Combust Sci 20:149–202

    Article  CAS  Google Scholar 

  • Kulandaivelu G, Gheetha V, Periyanan S (1989) Inhibition of energy transfer reactions in cyanobacteria by different ultraviolet radiation. Singhal GS, Barber J, Dilley RA, Govindjee, Haselkorn R, Mohanty P Photosynthesis, molecular biology and bioenergetics, Spriger-Verlag, New York, 305–313

    Google Scholar 

  • Liotenberg S, Campbell D, Rippka R, Houmard J, Tandeu de Marsac N (1996) Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium. Microbiology 142:611–622

    Article  CAS  PubMed  Google Scholar 

  • Lonneborg A, Lind AK, Kalia SR, Gustafsson P, Oquist G (1985) Acclimation process in the light-harvesting system of the cyanobacterium Anacystis nidulans following a light shift from white to red light. Plant Physiol 78:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto C, Rosales N, Bermúdez J, Morales E (2003) Pigment and protein production of the cyanobacterium Anabaena PCC 7120 in relation to nitrogen concentration and irradiance. Gayana Bot 60:83–89

    Article  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Torzilo G, Vonshak A (1999) Kinetic response of photosystem II photochemistry in cyanobacterium Spirulina platensis to high salinity is characterized by two distinct phases. Aust J Plant Physiol 26:283–292

    Article  CAS  Google Scholar 

  • Mihova SG, Georgiev DI, Minkova KM, Tchernov AA (1996) Phycobiliproteins in Rhodella reticulata and photoregulatory effects on their content. J Biotechnol 48:251–257

    Article  CAS  Google Scholar 

  • Mohapatra PK, Scheiwer U (2000) Dimethoate and quinalphos toxicity: pattern of photosynthetic pigment degradation and recovery in Synechococcus sp. PCC 6803. Algol Stud 99:79–94

    Google Scholar 

  • Mohapatra PK, Patra S, Samantaray PK, Mohanty RC (2003) Effect of the pyrethroid insecticide cypermethrin on photosynthetic pigments of the cyanobacterium Anabaena doliolum Bhar. Pol J Environ Stud 12(2):207–212

    Google Scholar 

  • Murthy SDS, Mohanty P (1991) Mercury induces alteration of energy transfer in phycobilisomes by selectively affecting the pigment protein, phycocyanin in the cyanobacterium Spirulina platensis. Plant Cell Physiol 32:231–237

    Article  CAS  Google Scholar 

  • Nakamoto H, Honma D (2006) Interaction of a small heat shock protein with light-harvesting cyanobacterial phycocyanins under stress conditions. FEBS Lett 580:3029–3034

    Article  CAS  PubMed  Google Scholar 

  • Nellesson H, Fletcher JS (1993) Assessment of publish eds. Literature on the uptake, accumulation, and translocation of heavy metals by vascular. Plants Chemosphere 9:1669–1680

    Article  Google Scholar 

  • Pandey R, Chauhan S, Singhal GS (1997) UVB-induced photodamage to phycobilisomes of Synechococcus sp. PCC 7942. J Photochem Photobiol B Biol 40:228–232

    Article  CAS  Google Scholar 

  • Pandhal J, Biggs C, Wright P (2008) Proteomics with a pinch of salt: a cyanobacterial perspective. Saline Syst 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandhal J, Ow SY, Wright PC, Biggs CA (2009) Comparative proteomics study of salt tolerance between a non-sequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J Proteome Res 8:818–828

    Article  CAS  PubMed  Google Scholar 

  • Poza-Carrion C, Fernadez-Valiente E, Fernadez-Pinas F, Leganes F (2001) Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. strain UAM 206 to combined fluctuations of irradiance, pH and inorganic carbon availability. J Plant Physiol 158:1455–1461

    Google Scholar 

  • Prasad SM, Kumar D, Zeeshan M (2005) Growth, photosynthesis, active oxygen species and antioxidants responses of paddy field cynobacterium Plectonema boryanum to endosulfan stress. J Gen Appl Microbiol 51:115–123

    Article  CAS  PubMed  Google Scholar 

  • Prassana R, Pabby A, Saxena S, Singh PK (2004) Modulation of pigment profiles of Calothrix elenkenii in response to environmental changes. J Plant Physiol 161:1125–1132

    Article  Google Scholar 

  • Rafiqul IM, Hassan A, Sulebele G, Orosco CA, Roustaian P, Jalal KCA (2003) Salt stress culture of blue green algae Spirulina fusiformis. Pak J Biol Sci 6:648–650

    Article  Google Scholar 

  • Rajagopal S, Jha IB, Murthy SDS, Mohanty P (1998) Ultraviolet-B effects on Spirulina platensis cells: modification of chromophore-protein interaction and energy transfer characteristics of phycobilisomes. Biochem Biophys Res Commun 249:172–177

    Article  CAS  PubMed  Google Scholar 

  • Ranjitha K, Kaushik BD (2005) Influence of environmental factors on accessory pigments of Nostoc muscorum. Indian J Microbiol 45:67–69

    Google Scholar 

  • Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–760

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D (2015) Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol 91:837–844

    Article  CAS  PubMed  Google Scholar 

  • Richaud C, Zabulon G, Jodder A, Thomas JC (2001) Nitrogen and sulphur starvation differentially affects phycobilisomes degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richa, Sinha RP (2015) Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats. Protoplasma 252(1):199–208

    Google Scholar 

  • Rinalducci S, Hideg E, Vass I, Zolla L (2006) Effect of moderate UV-B irradiation on Synechocystis PCC 6803 biliproteins. Biochem Biophys Res Commun 341:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Sah JF, Krishna KB, Srivastava M, Mohanty P (1998) Effects of ultraviolet-B radiation on phycobilisomes of Synechococcus PCC 7942: alterations in conformation and energy transfer characteristics. Biochem Mol Biol Int 44:245–257

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Bryant DA (1998) Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Arch Microbiol 169:10–19

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg-ATP dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satish N, Tiwari GL (2000) Pesticide tolerance in Nostoc linckia in relation to the growth and nitrogen fixation. Proc Natl Am Sci 70:319–323

    Google Scholar 

  • Schubert H, Hagemann M (1990) Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 71:169–172

    Article  CAS  Google Scholar 

  • Schubert H, Fulda S, Hagemann M (1993) Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6083. J Plant Physiol 142:291–295

    Article  CAS  Google Scholar 

  • Schwarz R, Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Nat Acad Sci USA 95:1108–1113

    Article  Google Scholar 

  • Sersen F, Kralova K (2001) New facts about CdCl2 action on the photosynthetic apparatus of spinach chloroplast and its comparison with HgCl2 action. Photosynthetica 39:575–580

    Article  CAS  Google Scholar 

  • Singh S, Dutta P (2005) Growth and survival potentials of immobilized diazotrophic cyanobacteria isolates exposed to common rice field herbicides. World J Microbiol Biotechnol 2:441–446

    Article  Google Scholar 

  • Singh G, Babele PK, Sinha RP, Tyagi MB, Kumar A (2013) Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species. Process Biochem 48:796–802

    Article  CAS  Google Scholar 

  • Singh SP, Rastogi RP, Häder D-P, Sinha RP (2014) Temporal dynamics of ROS biogenesis under simulated solar radiation in the cyanobacterium Anabaena variabilis PCC 7937. Protoplasma 251:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Lebert M, Kumar A, Kumar HD, Häder D-P (1995) Spectroscopic and biochemical analyses of UV effects of phycobilisomes of Anabaena sp. and Nostoc carmium. Bot Acta 108:87–92

    Article  CAS  Google Scholar 

  • Sinha RP, Richter P, Faddoul J, Braun M, Häder D-P (2002) Effects of UV and visible light on cyanobacteria at the cellular level. Photochem Photobiol Sci 1:553–559

    Article  CAS  PubMed  Google Scholar 

  • Six C, Joubin L, Partensky F, Holtzendorff J, Garczarek L (2007) UV-induced phycobilisome dismantling in the marine picocyanobacterium Synechococcus sp. WH8102. Photosynth Res 92:75–86

    Article  CAS  PubMed  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  CAS  Google Scholar 

  • Soltani N, Khavari-Nejad RA, Yazdi MT, Shokravi S (2007) Growth and some metabolic features of cyanobacterium Fischerella sp. FS18 in different combined nitrogen sources. J Sci Repub Iran 18:123–128

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Shumei W, Chen L, Gong X (2003) Promising fluorescent probes from phycobiliproteins. IEEE J Sel Top Quant 9:177–188

    Article  CAS  Google Scholar 

  • Takano H, Arai T, Hirano M, Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBJ 042902. Appl Microbiol Biotechnol 43:1014–1018

    Article  CAS  Google Scholar 

  • Tomasseli L, Margheri MC, Sacchi A (1995) Effects of light on pigments and photosynthetic activity in a phycoerythrin- rich strain of Spirulina subsalsa. Aquat Microb Ecol 9:27–31

    Article  Google Scholar 

  • Tomasseli L, Boldrini G, Margheri MC (1997) Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. J Appl Phycol 9:37–43

    Article  Google Scholar 

  • Tsekos I, Niell FX, Aguilera J, Lopez-Fiueroa F, Delivopoulos SG (2002) Ultrastructure of vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green light. Phycol Res 50:251–264

    Article  Google Scholar 

  • Tyagi R, Srinivas G, Vyas D, Kumar A, Kumar HD (1992) Differential effects of ultraviolet -b radiation on certain metabolic processes in a chromatically adapting Nostoc sp. Photochem Photobiol 55:401–407

    Article  CAS  PubMed  Google Scholar 

  • Unsal-Kacmaz K, Makhov GJD, Sancar A (2002) Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci U S A 99:6673–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma K, Mohanty P (2000) Alteration in the structure of phycobilisomes of the cyanobacterium Spirulina platensis in response to enhanced Na? level. World J Microbiol Biotechnol 16:795–798

    Article  CAS  Google Scholar 

  • Xia J (2005) Response of growth photosynthesis and photoinhibition of the edible cyanobacterium Nostoc sphaeroides colonies to thiobencarb herbicide. Chemosphere 59:561–566

    Article  CAS  PubMed  Google Scholar 

  • Zaccaro MC, Salazar C, Zulpa de Caire G, Storni de Cano M, Stella AM (2000) Lead toxicity in cyanobacterial porphyrin metabolism. Environ Toxicol 16:61–67

    Article  Google Scholar 

  • Zhou W, Tang X, Xiao H, Wang Y, Wang R (2009) Response of marine microalgae, heterotrophic bacteria and their relationship to enhanced UV-B radiation. Rev Ocean Coast Sea Res 8:35–38

    Google Scholar 

  • Zucchi MR, Neechi O (2001) Effects of temperature, irradiance and photoperiod on growth and pigment content in some fresh water red algae in culture. Phycol Res 49:103–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannaujiya, V.K., Sundaram, S., Sinha, R.P. (2017). Stress Response of Phycobiliproteins. In: Phycobiliproteins: Recent Developments and Future Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-6460-9_5

Download citation

Publish with us

Policies and ethics