Fabrication of Graphene Nanopore by Particle Beam Irradiation and Its Properties

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Graphene nanopore is expected to be potentially applied in DNA sequencing, genetic testing, protein analysis and clinical diagnosis. In this chapter, focused ion beam and electron beam were used to fabricate nanopore in graphene. And the mechanisms located in nanopore fabrication were illustrated. After that, the influence of nanopore size, defects and chirality of graphene were taken into consideration to research the mechanical and electronic transport properties of graphene nanopore. The results can help to promote the realization of the applications of graphene nanostructures in industry.

References

  1. 1.
    Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153CrossRefGoogle Scholar
  2. 2.
    Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624CrossRefGoogle Scholar
  3. 3.
    Gu LQ, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135:441–451CrossRefGoogle Scholar
  4. 4.
    Siwy ZS, Davenport M (2010) Nanopores: graphene opens up to DNA. Nat Nanotechnol 5:697–698CrossRefGoogle Scholar
  5. 5.
    Wanunu M, Dadosh T, Ray V et al (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814CrossRefGoogle Scholar
  6. 6.
    Novoselov K, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  7. 7.
    Avdoshenko SM, Nozaki D, da Rocha CG et al (2013) Dynamics and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett 13:1969–1976CrossRefGoogle Scholar
  8. 8.
    Wells DB, Belkin M, Comer J et al (2012) Assessing graphene nanopores for sequencing DNA. Nano Lett 12:4117–4123CrossRefGoogle Scholar
  9. 9.
    Tanugi DC, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRefGoogle Scholar
  10. 10.
    Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448–16449CrossRefGoogle Scholar
  11. 11.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New YorkCrossRefGoogle Scholar
  12. 12.
    Varchon F, Feng R, Hass J et al (2007) Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys Rev Lett 99:126805CrossRefGoogle Scholar
  13. 13.
    Nguyen TC, Otani M, Okada S (2011) Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. Phys Rev Lett 106:106801CrossRefGoogle Scholar
  14. 14.
    Moscatelli F, Scorzoni A, Poggi A et al (2006) Radiation hardness after very high neutron irradiation of minimum ionizing particle detectors based on 4H-SiC p-n junctions. IEEE Trans Nucl Sci 53:1557CrossRefGoogle Scholar
  15. 15.
    Wu X, Zhao HY, Yan D, Pei JY (2015) Investigation of gallium ions impacting monolayer graphene. AIP Adv 5:067171CrossRefGoogle Scholar
  16. 16.
    Teweldebrhan D, Balandin AA (2009) Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett 94:013101CrossRefGoogle Scholar
  17. 17.
    Abbas AN, Liu G, Liu B et al (2014) Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using hellium ion beam lithography. ACS Nano 8:1538–1546CrossRefGoogle Scholar
  18. 18.
    He K, Robertson AW, Gong C et al (2015) Controlled formation of closed-edge nanopores in graphene. Nanoscale 7:11602CrossRefGoogle Scholar
  19. 19.
    Liu S, Zhao Q, Xu J et al (2012) Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology 13:085301CrossRefGoogle Scholar
  20. 20.
    Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometer length scales. Nature 412:166–169CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Yi T, Zheng B et al (1999) The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Appl Surf Sci 137:83–90CrossRefGoogle Scholar
  22. 22.
    Ong Z, Pop E (2010) Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys Rev B 81:155408CrossRefGoogle Scholar
  23. 23.
    Abramova V, Slesarev AS, Tour JM (2013) Meniscus-mask lithography for narrow graphene nanoribbons. ACS Nano 7:6894–6898CrossRefGoogle Scholar
  24. 24.
    Jang I, Sinnott SB (2004) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4:109–114CrossRefGoogle Scholar
  25. 25.
    Pregler SK, Sinnott SB (2006) Molecular dynamics simulations of electron and ion beam irradiation of multiwalled carbon nanotubes: the effects on failure by inner tube sliding. Phys Rev B 73:224106CrossRefGoogle Scholar
  26. 26.
    Wu X, Zhao HY, Pei JY (2015) Fabrication of nanopore in graphene by electron and ion beam irradiation: influence of graphene thickness and substrate. Comput Mater Sci 102:258–266CrossRefGoogle Scholar
  27. 27.
    Bao W, Miao F, Chen Z et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566CrossRefGoogle Scholar
  28. 28.
    Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921CrossRefGoogle Scholar
  29. 29.
    Lv WP, Chen MD, Wu RA (2013) The impact of the number of layers of a graphene nanopore on DNA translocation. Soft Matt 9:960–966CrossRefGoogle Scholar
  30. 30.
    Wu X, Zhao HY, Zhong ML, Murakawa H, Tsukamoto M (2014) Molecular dynamics simulation of graphene sheets joining under ion beam irradiation. Carbon 66:31–38CrossRefGoogle Scholar
  31. 31.
    Liu Y, Chen X (2014) Mechanical properties of nanoporous graphene membrane. J Appl Phys 115:034303CrossRefGoogle Scholar
  32. 32.
    Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904CrossRefGoogle Scholar
  33. 33.
    Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRefGoogle Scholar
  34. 34.
    Liu L, Wei N, Zheng Y (2013) Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology 24:505703CrossRefGoogle Scholar
  35. 35.
    Ansari R, Ajori S (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct 51:274CrossRefGoogle Scholar
  36. 36.
    Gorjizadeh N, Farajian AA, Kawazoe Y (2009) The effects of defects on the conductance of graphene nanoribbons. Nanotechnology 20:015201CrossRefGoogle Scholar
  37. 37.
    Zhang T, Li XY, Kadkhodaei S et al (2012) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610CrossRefGoogle Scholar
  38. 38.
    Kumar S, Li XY, Haque A et al (2011) Is stress concentration relevant for nanocrystalline metals? Nano Lett 11:2510–2516CrossRefGoogle Scholar
  39. 39.
    Zheng XH, Zhang GR, Zeng Z et al (2009) Effects of antidots on the transport properties of graphene nanoribbons. Phys Rev B 80:075413CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations