Skip to main content

Fabrication of Graphene Nanopore by Particle Beam Irradiation and Its Properties

  • Chapter
  • First Online:
Influence of Particle Beam Irradiation on the Structure and Properties of Graphene

Part of the book series: Springer Theses ((Springer Theses))

  • 468 Accesses

Abstract

Graphene nanopore is expected to be potentially applied in DNA sequencing, genetic testing, protein analysis and clinical diagnosis. In this chapter, focused ion beam and electron beam were used to fabricate nanopore in graphene. And the mechanisms located in nanopore fabrication were illustrated. After that, the influence of nanopore size, defects and chirality of graphene were taken into consideration to research the mechanical and electronic transport properties of graphene nanopore. The results can help to promote the realization of the applications of graphene nanostructures in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  Google Scholar 

  2. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  Google Scholar 

  3. Gu LQ, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135:441–451

    Article  Google Scholar 

  4. Siwy ZS, Davenport M (2010) Nanopores: graphene opens up to DNA. Nat Nanotechnol 5:697–698

    Article  Google Scholar 

  5. Wanunu M, Dadosh T, Ray V et al (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    Article  Google Scholar 

  6. Novoselov K, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  7. Avdoshenko SM, Nozaki D, da Rocha CG et al (2013) Dynamics and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett 13:1969–1976

    Article  Google Scholar 

  8. Wells DB, Belkin M, Comer J et al (2012) Assessing graphene nanopores for sequencing DNA. Nano Lett 12:4117–4123

    Article  Google Scholar 

  9. Tanugi DC, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  Google Scholar 

  10. Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448–16449

    Article  Google Scholar 

  11. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York

    Book  Google Scholar 

  12. Varchon F, Feng R, Hass J et al (2007) Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys Rev Lett 99:126805

    Article  Google Scholar 

  13. Nguyen TC, Otani M, Okada S (2011) Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. Phys Rev Lett 106:106801

    Article  Google Scholar 

  14. Moscatelli F, Scorzoni A, Poggi A et al (2006) Radiation hardness after very high neutron irradiation of minimum ionizing particle detectors based on 4H-SiC p-n junctions. IEEE Trans Nucl Sci 53:1557

    Article  Google Scholar 

  15. Wu X, Zhao HY, Yan D, Pei JY (2015) Investigation of gallium ions impacting monolayer graphene. AIP Adv 5:067171

    Article  Google Scholar 

  16. Teweldebrhan D, Balandin AA (2009) Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett 94:013101

    Article  Google Scholar 

  17. Abbas AN, Liu G, Liu B et al (2014) Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using hellium ion beam lithography. ACS Nano 8:1538–1546

    Article  Google Scholar 

  18. He K, Robertson AW, Gong C et al (2015) Controlled formation of closed-edge nanopores in graphene. Nanoscale 7:11602

    Article  Google Scholar 

  19. Liu S, Zhao Q, Xu J et al (2012) Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology 13:085301

    Article  Google Scholar 

  20. Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometer length scales. Nature 412:166–169

    Article  Google Scholar 

  21. Zhu Y, Yi T, Zheng B et al (1999) The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Appl Surf Sci 137:83–90

    Article  Google Scholar 

  22. Ong Z, Pop E (2010) Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys Rev B 81:155408

    Article  Google Scholar 

  23. Abramova V, Slesarev AS, Tour JM (2013) Meniscus-mask lithography for narrow graphene nanoribbons. ACS Nano 7:6894–6898

    Article  Google Scholar 

  24. Jang I, Sinnott SB (2004) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4:109–114

    Article  Google Scholar 

  25. Pregler SK, Sinnott SB (2006) Molecular dynamics simulations of electron and ion beam irradiation of multiwalled carbon nanotubes: the effects on failure by inner tube sliding. Phys Rev B 73:224106

    Article  Google Scholar 

  26. Wu X, Zhao HY, Pei JY (2015) Fabrication of nanopore in graphene by electron and ion beam irradiation: influence of graphene thickness and substrate. Comput Mater Sci 102:258–266

    Article  Google Scholar 

  27. Bao W, Miao F, Chen Z et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566

    Article  Google Scholar 

  28. Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921

    Article  Google Scholar 

  29. Lv WP, Chen MD, Wu RA (2013) The impact of the number of layers of a graphene nanopore on DNA translocation. Soft Matt 9:960–966

    Article  Google Scholar 

  30. Wu X, Zhao HY, Zhong ML, Murakawa H, Tsukamoto M (2014) Molecular dynamics simulation of graphene sheets joining under ion beam irradiation. Carbon 66:31–38

    Article  Google Scholar 

  31. Liu Y, Chen X (2014) Mechanical properties of nanoporous graphene membrane. J Appl Phys 115:034303

    Article  Google Scholar 

  32. Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904

    Article  Google Scholar 

  33. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015

    Article  Google Scholar 

  34. Liu L, Wei N, Zheng Y (2013) Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology 24:505703

    Article  Google Scholar 

  35. Ansari R, Ajori S (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct 51:274

    Article  Google Scholar 

  36. Gorjizadeh N, Farajian AA, Kawazoe Y (2009) The effects of defects on the conductance of graphene nanoribbons. Nanotechnology 20:015201

    Article  Google Scholar 

  37. Zhang T, Li XY, Kadkhodaei S et al (2012) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610

    Article  Google Scholar 

  38. Kumar S, Li XY, Haque A et al (2011) Is stress concentration relevant for nanocrystalline metals? Nano Lett 11:2510–2516

    Article  Google Scholar 

  39. Zheng XH, Zhang GR, Zeng Z et al (2009) Effects of antidots on the transport properties of graphene nanoribbons. Phys Rev B 80:075413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, X. (2018). Fabrication of Graphene Nanopore by Particle Beam Irradiation and Its Properties. In: Influence of Particle Beam Irradiation on the Structure and Properties of Graphene. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6457-9_6

Download citation

Publish with us

Policies and ethics