Part of the Springer Theses book series (Springer Theses)


In this chapter, the object of this work-graphene, is detailedly introduced, including its origin, structure and properties, preparation methods and applications. Then, to realize its applications, the content of this work is proposed, i.e. processing of graphene by particle beam irradiation. After that, the methodologies used in this work are presented. This chapter can give us the idea why we should do this research and how to do it.


  1. 1.
    Chen YS, Huang Y et al (2013) Graphene: new type of two-dimensional carbon nanomaterials. Science Press, Beijing (in Chinese)Google Scholar
  2. 2.
    Kroto HW, Health JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  3. 3.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  4. 4.
    Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250–254CrossRefGoogle Scholar
  5. 5.
    Novoselov K, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  6. 6.
    Boehm HP, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24:241–245CrossRefGoogle Scholar
  7. 7.
    Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds. Pure Appl Chem 66:1893–1901CrossRefGoogle Scholar
  8. 8.
    Fitzer E, Kochling KH, Boehm HP et al (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67:473–506CrossRefGoogle Scholar
  9. 9.
    McNaught AD, Wilkinson A (1997) IUPAC in compendium of chemical terminology, 2nd edn. Blackwell Scientific, OxfordGoogle Scholar
  10. 10.
    China graphene industry technology innovation strategic alliance, terms and definitions of graphene materials (2014) Q/LM01CGS001–2013 (in Chinese)Google Scholar
  11. 11.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  12. 12.
    Zhu HW, Xu ZP, Xie D et al (2011) Graphene-the structure, preparation methods and properties characterization. Tsinghua University Press, Beijing (in Chinese)Google Scholar
  13. 13.
    Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Mater 20:323202CrossRefGoogle Scholar
  14. 14.
    Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRefGoogle Scholar
  15. 15.
    Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRefGoogle Scholar
  16. 16.
    Frank IW, Tanenbaum DM (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25:2558–2561CrossRefGoogle Scholar
  17. 17.
    Huang X, Qi X, Boey F et al (2012) Graphene-based composites. Chem Soc Rev 41:666–686CrossRefGoogle Scholar
  18. 18.
    Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  19. 19.
    Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  20. 20.
    Zhang YB, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201CrossRefGoogle Scholar
  21. 21.
    Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451CrossRefGoogle Scholar
  22. 22.
    Elias DC, Nair RR, Mohiuddin T et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613CrossRefGoogle Scholar
  23. 23.
    Castro N, Guinea F, Peres N et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  24. 24.
    Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  25. 25.
    Wang F, Zhang Y, Tian C et al (2008) Gate-variable optical transitions in graphene. Science 320:206CrossRefGoogle Scholar
  26. 26.
    Bonaccorso F, Sun Z, Hasan T et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–612CrossRefGoogle Scholar
  27. 27.
    Hendry E, Hale PJ, Moger J et al (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:097401CrossRefGoogle Scholar
  28. 28.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRefGoogle Scholar
  29. 29.
    Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  30. 30.
    Zuo X, He S, Li D et al (2010) Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939CrossRefGoogle Scholar
  31. 31.
    Stoller MD, Park SJ, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  32. 32.
    Schniepp HC, Li JL, McAllister MJ et al (2006) Functionalized single graphene sheets derive from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRefGoogle Scholar
  33. 33.
    Stankovich S, Piner RD, Chen XQ et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158Google Scholar
  34. 34.
    Concha BN, Eugenio C, Carlos MG et al (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale 4:3977–3982CrossRefGoogle Scholar
  35. 35.
    Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916CrossRefGoogle Scholar
  36. 36.
    Deng D, Pan X, Zhang H et al (2010) Freestanding graphene by thermal splitting of silicon carbide granules. Adv Mater 22:2168–2171CrossRefGoogle Scholar
  37. 37.
    Hu B, Ago H, Orofeo CM et al (2012) On the nucleation of graphene by chemical vapor deposition. New J Chem 36:73–77CrossRefGoogle Scholar
  38. 38.
    Li XL, Wang XR, Zhang L et al (2008) Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRefGoogle Scholar
  39. 39.
    Wang X, Zhi LJ, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRefGoogle Scholar
  40. 40.
    Miao XC, Tongay S, Petterson MK et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750CrossRefGoogle Scholar
  41. 41.
    Wang JT, Ball JM, Barea EM et al (2014) Low-temperature proceed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730CrossRefGoogle Scholar
  42. 42.
    Li XM, Zhu HW, Wang KL et al (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748CrossRefGoogle Scholar
  43. 43.
    Han SJ, Garcia AV, Oida S et al (2013) Graphene radio frequency receiver integrated circuit. Nat Commun 5:3086Google Scholar
  44. 44.
    Lin YM, Garcia AV, Han SJ et al (2011) Wafer-scale graphene integrated circuit. Science 332:1294–1297CrossRefGoogle Scholar
  45. 45.
    Bunch JS, van der Zande AM, Verbridge SS et al (2007) Electromechanical resonators from graphene sheets. Science 315:490–493CrossRefGoogle Scholar
  46. 46.
    Smith AD, Niklaus F, Paussa A et al (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242CrossRefGoogle Scholar
  47. 47.
    Rojas FM, Rossier JF, Brey L et al (2008) Performance limits of graphene-ribbon field-effect transistors. Phys Rev B 77:045301CrossRefGoogle Scholar
  48. 48.
    Farmer DB, Chiu HY, Lin YM et al (2009) Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett 9:4474–4478CrossRefGoogle Scholar
  49. 49.
    Blake P, Brimicombe PD, Nair RR et al (2010) Doped graphene electrodes for organic solar cells. Nanotechnology 21:505204CrossRefGoogle Scholar
  50. 50.
    Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRefGoogle Scholar
  51. 51.
    Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech 5:574–578CrossRefGoogle Scholar
  52. 52.
    Wu J, Becerril Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302CrossRefGoogle Scholar
  53. 53.
    Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921CrossRefGoogle Scholar
  54. 54.
    Avdoshenko SM, Nozaki D, da Rocha CG et al (2013) Dynamics and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett 13:1969–1976CrossRefGoogle Scholar
  55. 55.
    Sathe C, Zou X, Leburton JP et al (2011) Computational investigation of DNA detection using graphene nanopores. ACS Nano 5:8842–8851CrossRefGoogle Scholar
  56. 56.
    Chen ZP, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRefGoogle Scholar
  57. 57.
    Wang DW, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752CrossRefGoogle Scholar
  58. 58.
    Palacios T, Hsu A, Wang H (2010) Applications of graphene devices in RF communications. IEEE Commun Mag 48:122–128CrossRefGoogle Scholar
  59. 59.
    Abadal S, Alarcón E, Lemme M et al (2013) Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun Mag 51:137–143CrossRefGoogle Scholar
  60. 60.
    Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRefGoogle Scholar
  61. 61.
    Tanugi DC, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRefGoogle Scholar
  62. 62.
    Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448–16449CrossRefGoogle Scholar
  63. 63.
    Zou R, Zhang Z, Xu K (2012) A method for joining individual graphene sheets. Carbon 50:4965–4972CrossRefGoogle Scholar
  64. 64.
    Ye X, Huang T, Lin Z et al (2013) Lap joining of graphene flakes by current-assisted CO2 laser irradiation. Carbon 61:329–335CrossRefGoogle Scholar
  65. 65.
    Kim BH, Kim JY, Jeong SJ et al (2010) Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4:5464–5470CrossRefGoogle Scholar
  66. 66.
    Bai JW, Cheng R, Xiu F et al (2010) Very large magnetoresistance in graphene nanoribbons. Nat Nanotechnol 5:655–659CrossRefGoogle Scholar
  67. 67.
    Sinitskii A, Tour JM (2010) Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. J Am Chem Soc 132:14730–14732CrossRefGoogle Scholar
  68. 68.
    Liang XG, Jung YS, Wu S et al (2010) Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett 10:2454–2460CrossRefGoogle Scholar
  69. 69.
    Ning GQ, Fan Z, Wang G et al (2011) Gram-scale synthesis of nanomesh grahene with high surface area and its applications in supercapacitor electrodes. Chem Commun 47:5976–5978CrossRefGoogle Scholar
  70. 70.
    Wang M, Fu L, Gan L et al (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:1238CrossRefGoogle Scholar
  71. 71.
    Safron N, Kim M, Gopalan P et al (2012) Barrier-guided growth of micro- and nano-structured graphene. Adv Mater 24:1041–1045CrossRefGoogle Scholar
  72. 72.
    Yuan WJ, Chen J, Shi G (2014) Nanoporous graphene materials. Mater Today 17:77–85CrossRefGoogle Scholar
  73. 73.
    Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRefGoogle Scholar
  74. 74.
    Sheng ZH, Tao L, Chen JJ et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRefGoogle Scholar
  75. 75.
    Suezawa MS, Sumino KJ, Harada HF et al (1986) Nitrogen oxygen complexes as shallow donors in silicon crystals. J Appl Phys 25:859–861CrossRefGoogle Scholar
  76. 76.
    Deng DH, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193CrossRefGoogle Scholar
  77. 77.
    Iwazaki T, Obinata R, Sugimoto W (2009) High oxygen-reduction activity of silk-derived activated carbon. Electrochem Commun 11:376–378CrossRefGoogle Scholar
  78. 78.
    Terrones M, Banhart F, Grobert N et al (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRefGoogle Scholar
  79. 79.
    Krasheninnkov AV, Nordlund K, Keinonen J (2002) Ion-irradiation-induced welding of carbon nanotubes. Phys Rev B 66:245403CrossRefGoogle Scholar
  80. 80.
    Jang I, Sinnott SB (2004) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4:109–114CrossRefGoogle Scholar
  81. 81.
    Bangert U, Pierce W, Kepaptsoglou DM et al (2013) Ion implantation of graphene-toward IC compatible technology. Nano Lett 13:4902–4907CrossRefGoogle Scholar
  82. 82.
    Xu Y, Zhang K, Brüsewitz C et al (2013) Investigate of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Adv 3:072120CrossRefGoogle Scholar
  83. 83.
    Xu T, Xie X, Sun L (2013) Fabrication of nanopores using electron beam. Paper presented at NEMS2013, Suzhou, China, 7–10 Apr 2013Google Scholar
  84. 84.
    He K, Robertson AW, Gong C et al (2015) Controlled formation of closed-edge nanopores in graphene. Nanoscale 7:11602CrossRefGoogle Scholar
  85. 85.
    Lu N, Wang J, Floresca HC et al (2012) In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400–1200 °C. Carbon 50:2961–2965CrossRefGoogle Scholar
  86. 86.
    Siwy ZS, Davenport M (2010) Nanopores: GRAPHENE opens up to DNA. Nat Nanotech 5:697–698CrossRefGoogle Scholar
  87. 87.
    Bai J, Zhong X, Jiang S et al (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations