Skip to main content

Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network

  • Conference paper
  • First Online:
IT Convergence and Security 2017

Abstract

Accurate prediction of diabetes is an important issue in health prognostics. However, data overfitting degrades the prediction accuracy in diabetes prognosis. In this paper, a reliable prediction system for the disease of diabetes is presented using a dropout method to address the overfitting issue. In the proposed method, deep learning neural network is employed where fully connected layers are followed by dropout layers. The proposed neural network outperforms other state-of-art methods in better prediction scores for the Pima Indians Diabetes Data Set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, K.G.M.M., Zimmet, P.F.: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. In: provisional report of a WHO consultation. Diabetic Med. 15(7), 539–553 (1998)

    Article  Google Scholar 

  2. National Diabetes Data Group: Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28(12), 1039–1057 (1979)

    Article  Google Scholar 

  3. Vashist, S.K.: Non-invasive glucose monitoring technology in diabetes management: A review. Anal. Chim. Acta 750, 16–27 (2012)

    Article  Google Scholar 

  4. Potts, R.O., Tamada, A.J., Tierney, J.M.: Glucose monitoring by reverse iontophoresis. Diabetes Metab. Res. Rev. 18, S49–S53 (2002)

    Article  Google Scholar 

  5. Wentholt, I.M.E., Hoekstra, J.B.L., Zwart, A., DeVries, J.H.: Pendra goes Dutch: lessons for the CE mark in Europe. Diabetologia 48(6), 1055–1058 (2005)

    Article  Google Scholar 

  6. Harman-Boehm, I., Gal, A., Raykhman, A.M., Zahn, J.D., Naidis, E., Mayzel, Y.: Noninvasive glucose monitoring: a novel approach. J. Diabetes Sci. Technol. 3(2), 253–260 (2009)

    Article  Google Scholar 

  7. Bandodkar, A.J., Jia, W., Yardımcı, C., Wang, X., Ramirez, J., Wang, J.: Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87(1), 394–398 (2014)

    Article  Google Scholar 

  8. Lee, H.J., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016)

    Article  Google Scholar 

  9. Zanon, M., Sparacino, G., Facchinetti, A., Talary, M.S., Mueller, M., Caduff, A., Cobelli, C.: Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness. Sensors 13(6), 7279–7295 (2013)

    Article  Google Scholar 

  10. Caduff, A., Zanon, M., Mueller, M., Zakharov, P., Feldman, Y., De Feo, O., Donath, M., Stahel, W.A., Talary, M.S.: The effect of a global, subject, and device-specific model on a noninvasive glucose monitoring multisensor system. J. Diabetes Sci. Technol. 9(4), 865–872 (2015)

    Article  Google Scholar 

  11. Park, Y.J., Seong, K.E., Jeong, S.Y., Kang, S.J.: Self-organizing wearable device platform for assisting and reminding humans in real time. Mobile Inform. Syst. 2016, 15 (2016)

    Google Scholar 

  12. Smith, J.W., Everhart, J., Dickson, W., Knowler W., Johannes, R.: Using the adap learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the annual symposium on computer application in medical care. American Medical Informatics Association, p. 261 (1988)

    Google Scholar 

  13. Kayaer, K., Yildirim, T.: Medical diagnosis on pima indian diabetes using general regression neural networks. In: Proceedings of the International Conference on Artificial Neural Networks and Neural Information Processing, pp. 181–184 (2003)

    Google Scholar 

  14. Ashiquzzaman, A., Tushar, A. K.: Handwritten arabic numeral recognition using deep learning neural networks. In: 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–4. IEEE (2017)

    Google Scholar 

  15. Dasgupta, J., Sikder, J., Mandal, D.: Modeling and optimization of polymer enhanced ultrafiltration using hybrid neuralgenetic algorithm based evolutionary approach. Appl. Soft Comput. 55, 108–126 (2017)

    Article  Google Scholar 

  16. Nielsen, M.A.: Neural networks and deep learning. http://neuralnetworksanddeeplearning.com.Accessed 29 May 2017

  17. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Krizhevsky, A., Sutskever, I., and Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  20. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. Aistats 15(106), 275 (2011)

    Google Scholar 

  21. Heaton, J.: Introduction to neural networks with Java. Heaton Research, Inc. (2008)

    Google Scholar 

  22. Panchal, G., Ganatra, A., Kosta, Y., Panchal, D.: Review on methods of selecting number of hidden nodes in artificial neural network. Int. J. Comput. Theory Eng. 3(2), 332–337 (2011)

    Article  Google Scholar 

  23. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  24. Warde-Farley, D., Goodfellow, I. J., Courville, A., Bengio, Y.: An empirical analysis of dropout in piecewise linear networks. arXiv preprint arXiv:1312.6197 (2013)

  25. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml Accessed 29 May 2017

  26. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/. Accessed 29 May 2017

  27. Theano Development Team, Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints, vol. abs/1605.02688 (2016)

    Google Scholar 

  28. Chollet, F.: Keras https://github.com/fchollet/keras. Accessed 01 June 2017

Download references

Acknowledgements

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government [17ZS1700, Development of smart HSE system for shipyard and onshore plant]. The authors also acknowledge department of Computer Science and Engineering, University of Asia Pacific for supporting this research in various ways.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Rashedul Islam or Jongmyon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ashiquzzaman, A. et al. (2018). Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network. In: Kim, K., Kim, H., Baek, N. (eds) IT Convergence and Security 2017. Lecture Notes in Electrical Engineering, vol 449. Springer, Singapore. https://doi.org/10.1007/978-981-10-6451-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6451-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6450-0

  • Online ISBN: 978-981-10-6451-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics