Skip to main content

Characteristics of Magnetorheological Fluids Applied to Prosthesis for Lower Limbs with Active Damping

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 449))

Abstract

The presence of people with amputations makes imminent the necessity of devices that replace the limb in both the aesthetic and functional, for which we propose the design and control of a robotic prosthesis with active damping using Magnetoreological Fluids (MRF) that are a new type of intelligent materials that have been characterized obtaining a shear yield stress of 41,65 kPa applying a controlled magnetic field of 0,8 T with a temperature of 20 °C, in order to have the active damping in the prosthesis will be necessary the use of a Magnetoreological (MR) damper which underwent to a dynamic damping behavior test reflecting 250 N as the maximum damping force. Control with Magnetorheological technology allows to have an instantaneous response in function of the signals obtained from the sensors, so that the patients could have a natural gait.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xu, L., Wang, D.H., Fu, O., Yuan, G., Hu, L.Z.: A novel four-bar linkage prosthetic knee based on magnetorheological effect: principle, structure, simulation and control. Smart Mater. Struct. 25, 12 (2016). doi:10.1088/0964-1726/25/11/115007

    Google Scholar 

  2. Price, P.: The diabetic foot: quality of life. Clin. Infect. Dis. 39, S129–S131 (2004). doi:10.1086/383274

    Article  Google Scholar 

  3. Young, A.J., Simon, A.M., Fey, N.P., Hargrove, L.J.: Intent recognition in a powered lower limb prosthesis using time history information. Ann. Biomed. Eng. 42(3), 631–641 (2014). doi:10.1007/s10439-013-0909-0

    Article  Google Scholar 

  4. Ragusilaa, V., Emami, M.R.: Mechatronics by analogy and application to legged locomotion, Mechatronics. Inf. Process 000, 1–19 (2016). doi:10.1016/j.mechatronics.2016.02.007

    Google Scholar 

  5. Zheng, E., Wang, Q.: Noncontact capacitive sensing based locomotion transition recognition for amputees with robotic transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 161–170 (2016). doi:10.1109/TNSRE.2016.2529581

    Article  Google Scholar 

  6. Dellon, B., Matsuoka, Y.: Prosthetics, exoskeletons, and rehabilitation. IEEE Robot. Autom. Mag. 14, 30–34 (2007). doi:10.1109/MRA.2007.339622

    Article  Google Scholar 

  7. Lawson, B.E., Mitchell, J., Truex, D., Shultz, A., Ledoux, E., Goldfarb, M.: A robotic leg prosthesis: design, control, and implementation. IEEE Robot. Autom. Mag. 21, 70–81 (2014). doi:10.1109/MRA.2014.2360303

    Article  Google Scholar 

  8. Lawson, B.E., Ledoux, E.D., Goldfarb, M.: A robotic lower limb prosthesis for efficient bicyclin. IEEE Trans. Rob. 33, 432–445 (2017). doi:10.1109/TRO.2016.2636844

    Article  Google Scholar 

  9. Park, J., Yoon, G.H., Kang, J.W., Choi, S.B.: Design and control of a prosthetic leg for above-knee amputees operated in semiactive and active modes. Smart Mat. Struct. 25, 13 (2016). doi:10.1088/0964-1726/25/8/085009

    Google Scholar 

  10. Susan-Resiga, D., Vékás, L.: Yield stress and flow behavior of concentrated ferrofluid-based magnetorheological fluids: the influence of composition, pp. 645–653. Springer, Heidelberg (2014)

    Google Scholar 

  11. Serrano-Sanchez, J.A., Lera-Navarro, A., Espino-Torón, L.: Physical activity and differences of functional fitness and quality of life in older males. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte (2016). doi:10.1093/gerona/56.suppl_2.23

    Google Scholar 

  12. Xu, L., Wang, D.H., Fu, Q., Yuan, G., Hu, L.Z.: A novel four-bar linkage prosthetic knee based on magnetorheological effect: principle, structure, simulation and control. Smart Mater. Struct. 25(11), 115007 (2016). doi:10.1088/1361-665X/aa61f1

    Article  Google Scholar 

  13. Sarkar, C., Hirani, H.: Theoretical and experimental studies on a magnetorheological brake operating under compression plus shear mode. Smart Mater. Struct. 22(11), 115032 (2013). doi:10.1088/0964-1726/22/11/115032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Arteaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Arteaga, O. et al. (2018). Characteristics of Magnetorheological Fluids Applied to Prosthesis for Lower Limbs with Active Damping. In: Kim, K., Kim, H., Baek, N. (eds) IT Convergence and Security 2017. Lecture Notes in Electrical Engineering, vol 449. Springer, Singapore. https://doi.org/10.1007/978-981-10-6451-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6451-7_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6450-0

  • Online ISBN: 978-981-10-6451-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics