Skip to main content

Intrusion Detection Based on Self-adaptive Differential Evolution Extreme Learning Machine with Gaussian Kernel

  • Conference paper
  • First Online:
Parallel Architecture, Algorithm and Programming (PAAP 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 729))

Abstract

In our everyday life, intrusion detection system(IDS) becomes a promising area of research in the domain of security. With the rapid development of network-based services, IDS can detect the intruders who are not authorized to the present computer system, so IDS has emerged as an essential component and an important technique for network security.

In order to conquer the disadvantage of the traditional algorithm for single-hidden layer feedforward neural network (SLFN), an improved algorithm, called extreme learning machine (ELM), is proposed by Huang et al. However, ELM is sensitive to the neuron number in hidden layer and its selection is a difficult-to-solve problem. ELM is an interested area of research for detecting possible intrusions and attacks. In this paper, we propose an improved learning algorithm named self-adaptive differential evolution extreme learning machine with Gaussian Kernel (SaDE-KELM) for classifying and detecting the intrusions. We compare our methods with commonly used ELM, DE-ELM techniques in classifications. Simulation results show that the proposed SaDE-KELM approach achieves higher detection accuracy in classification case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: a rule-based intrusion detection approach. IEEE Trans. Softw. Eng. 21(3), 181–199 (1995)

    Article  Google Scholar 

  2. Ikram, S.T., Cherukuri, A.K.: Improving accuracy of intrusion detection model using PCA and optimized SVM[J]. CIT. J. Comput. Inf. Technol. 24(2), 133–148 (2016)

    Article  Google Scholar 

  3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN2004), vol. 2, no. 25–29, pp. 985–990

    Google Scholar 

  4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501

    Google Scholar 

  5. Espana-Boquera, S., Zamora-Martínez, F., Castro-Bleda, M.J., et al.: Efficient BP algorithms for general feedforward neural networks. In: International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 327–336). Springer, Heidelberg (2007)

    Google Scholar 

  6. Thatte, G., Mitra, U., Heidemann, J.: Parametric methods for anomaly detection in aggregate traffic. IEEE/ACM Trans. Netw. 19(2), 512–525 (2011)

    Article  Google Scholar 

  7. Qin, M., Hwang, K.: Frequent episode rules for internet anomaly detection. In: Proceedings of the Network Computing and Applications, Third IEEE International Symposium. Washington, DC, USA: IEEE Computer Society, pp. 161–168 (2004)

    Google Scholar 

  8. He, X., Papadopoulos, C., Heidemann, J., Mitra, U., Riaz, U.: Remote detection of bottleneck links using spectral and statistical methods. Comput. Netw. 53, 279–298 (2009)

    Article  MATH  Google Scholar 

  9. Streilein, W.W., Cunningham, R.K., Webster, S.E.: Improved detection of low-profile probe and denial-of-service attacks. In: Proceedings of the 2001 Workshop on Statistical and Machine Learning Techniques in Computer Intrusion Detection (2001)

    Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  11. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Lean. Cybern. 2(2), 107–122 (2011)

    Article  Google Scholar 

  12. Tandon, G.: Weighting versus pruning in rule validation for detecting network and host anomalies. In: Proceedings of the 13th ACM SIGKDD international. ACM Press (2007)

    Google Scholar 

  13. Liao, Y., Vemuri, V.R.: Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 25, 439–448 (2002)

    Article  Google Scholar 

  14. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ilonen, J., Kamarainen, J.I., Lampinen, J.: Differential evolution training algorithm for feedforward neural networks. Neural Process. Lett. 17, 93–105 (2003)

    Article  Google Scholar 

  16. Subudhi, B., Jena, D.: Differential evolution and levenberg marquardt trained neural network scheme for nonlinear system identification. Neural Process. Lett. 27, 285–296 (2008)

    Article  Google Scholar 

  17. Zhu, Q.-Y., Qin, A.-K., Suganthan, P.-N., Huang, G.-B.: Evolutionary extreme learning machine. Pattern Recog. 38(10), 1759–1763 (2005)

    Article  MATH  Google Scholar 

  18. KDDCUPdataset: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (1999)

  19. Mukkamala, S., Sung, A.: Detecting denial of service attacks using support vector machines. In: Proceedings of the 12th IEEE International Conference on Fuzzy Systems (2003)

    Google Scholar 

  20. Luo, M., Wang, L., Zhang, H., Chen, J.: A research on intrusion detection based on unsupervised clustering and support vector machine. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 325–336. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39927-8_30

    Chapter  Google Scholar 

  21. Kim, D.S., Park, J.S.: Network-Based Intrusion Detection with Support Vector Machines. In: Kahng, H.-K. (ed.) ICOIN 2003. LNCS, vol. 2662, pp. 747–756. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45235-5_73

    Chapter  Google Scholar 

  22. Lin, Y., Lv, F., Zhu S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T.S.: Large-scale image classification: fast feature extraction and SVM training. In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1689–1696 (2011)

    Google Scholar 

  23. Huang, G.-B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  24. Storn, R., Price, K.: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brest, J., Greiner, S., Bŏskovíc, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comprehensive study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

    Google Scholar 

  26. Wu, J., Cai, Z.H.: Attribute weighting via differential evolution algorithm for attribute weighted naive bayes (WNB). J. Comput. Inf. Syst. 7, 1672–1679 (2011)

    Google Scholar 

  27. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.K.: Costbased modeling for fraud and intrusion detection: results from the JAM project. In: Proceedings of DARPA Information Survivability Conference and Exposition, vol. 2, pp. 130–144 (2002)

    Google Scholar 

Download references

Acknowledgement

This research was supported by key science research project of Education Department of Hainan province (Hnky2017ZD-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Ku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this paper

Cite this paper

Ku, J., Zheng, B. (2017). Intrusion Detection Based on Self-adaptive Differential Evolution Extreme Learning Machine with Gaussian Kernel. In: Chen, G., Shen, H., Chen, M. (eds) Parallel Architecture, Algorithm and Programming. PAAP 2017. Communications in Computer and Information Science, vol 729. Springer, Singapore. https://doi.org/10.1007/978-981-10-6442-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6442-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6441-8

  • Online ISBN: 978-981-10-6442-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics