Advertisement

Introduction

  • Yuzo HosoyaEmail author
  • Kosuke Oya
  • Taro Takimoto
  • Ryo Kinoshita
Chapter
  • 654 Downloads
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

In advance of focusing in subsequent chapters on the main theme of the measures of interdependency, Chap. 1 provides a brief overview of the literature on empirical causal analysis and places the theme in a broader perspective, comparing a variety of conflicting views on how certain statistical associations can be viewed as causal. Among others, alluded to is the field experiment model of detecting causal effects by Neyman (1923) and its reliance on a counterfactual assumption. Controlled random experiments are compared with observational studies in econometrics. The concepts of causality and exogeneity in the framework of the simultaneous equation are discussed. Specifically, ancillarity and conditioning in statistical inferences are explained and their relation to exogeneity is expounded. A preliminary concept of Granger causality is introduced, and the role of prediction improvement in empirical analyses is emphasized.

Keywords

Ancillarity Concept of causality Conditional inference Controlled random experiment Cowles approach Endogenous variable Exogenous variable Granger causality Marshall’s causal effect Neyman model of field experiment Structural equation model 

References

  1. Athanasopoulos, G., & Vahid, F. (2008). VARMA versus VAR for macroeconomic forecasting. Journal of Business and Economic Statistics, 26, 237–252.CrossRefMathSciNetGoogle Scholar
  2. Barndorff-Nielsen, O. (1978). Information and Exponential Families: In Statistical Theory. Chichester: Wiley.Google Scholar
  3. Basu, D. (1964). Recovery of ancillary information. Sankhya, 21, 247–256.zbMATHGoogle Scholar
  4. Birnbaum, A. (1962). On the foundations of statistical inference (with discussion). Journal of American Statistical Association, 57, 269–326.CrossRefzbMATHMathSciNetGoogle Scholar
  5. Cox, D. R. (1958). Some problems connected with statistical inference. Annals of Mathematical Statistics, 29, 357–372.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Cox, D. R., & Wermuth, N. (2001). Some statistical aspects of causality. European Sociological Review, 17, 65–74.CrossRefGoogle Scholar
  7. Engle, R. F., Hendry, D. F., & Richard, J.-F. (1983). Exogeneity. Econometrica, 51, 277–304.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Fisher, R. A. (1925). Theory of statistical estimation. Proceedings of Cambridge Philosophical Society, 22, 700–725.CrossRefzbMATHGoogle Scholar
  9. Fisher, R.A. (1934). Two new properties of mathematical likelihood, Proceedings of Royal Society (London), A 144, 285-307.Google Scholar
  10. Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver and Boyd.zbMATHGoogle Scholar
  11. Freedman, D. A. (2010). Statistical Models and Causal Inference. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  12. Granger, C. W. J. (1963). Economic process involving feedback. Information and Control, 6, 28–48.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Granger, C. W. J., & Hatanaka, M. (1964). Spectral Analysis of Economic Time Series. Princeton: Princeton University Press.zbMATHGoogle Scholar
  14. Haavelmo, T. (1944). The probability approach in econometrics, Econometrica, 12, supplement.Google Scholar
  15. Hamilton, J. D. (1994). Time Series Analysis. Princeton: Princeton University Press.zbMATHGoogle Scholar
  16. Heckman, J. J. (2000). Causal parameters and policy analysis in economics: A twentieth century retrospective. The Quarterly Journal of Economics, 115, 45–97.CrossRefzbMATHGoogle Scholar
  17. Hicks, J. (1979). Causality in Economics. Oxford: Basil Blackwell.Google Scholar
  18. Hill, A. B. (1965). The environment and disease: association or causation. Proceedings of the Royal Society of Medicine, 58, 295–300.Google Scholar
  19. Holland, P. (1986). Statistics and causal inference (with discussion). Journal of the American Statistical Association, 81, 945–970.CrossRefzbMATHMathSciNetGoogle Scholar
  20. Hosoya, Y. (1988). The second-order Fisher information. Biometrika, 75, 265–274.CrossRefzbMATHMathSciNetGoogle Scholar
  21. Hosoya, Y., Tsukuda, Y., & Terui, N. (1989). Ancillarity and the limited information maximum-likelihood estimation of a structural equation in a simultaneous equation system. Econometric Theory, 5, 384–404.CrossRefMathSciNetGoogle Scholar
  22. Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica, 59, 1551–1580.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Keynes, J. M. (1939). Professor Tinbergen’s method. The Economic Journal, 49, 558–570.CrossRefGoogle Scholar
  24. Keynes, J. M. (1940). Comment on Tinbergen’ s response. Economic Journal, 50, 154–156.CrossRefGoogle Scholar
  25. Klein, L. R. (1981). Econometric models as guides for decision-making. London: The Free Press.Google Scholar
  26. Lucas, R. (1976). Econometric policy evaluation: A critique, the phillips curve and labor markets. Carnegie Rochester Conference Series on Public Policy, I, 19–46.CrossRefGoogle Scholar
  27. Marschak, J. (1953). Economic measurements for policy and prediction. In William Hood & Tialling Koopmans (Eds.), Studies in Econometric Method (pp. 1–26). New York: Wiley.Google Scholar
  28. Marshall, A. (1920). Principles of Economics (8th ed.). Londonn: Macmillan and Co. (Reprinted 1930).Google Scholar
  29. Neyman, J. (1923). Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes, Roczniki Nauk Rolniczki, 10, 1–51, in Polish. English translation by D. Dabrowska & T. Speed (1990), Statistical Science, 5, 463–480 (with discussion).Google Scholar
  30. Simon, H. A. (1953). Causal ordering and identifiability. In C. Hood & T. C. Koopmans (Eds.), Studies in Econometric Method (pp. 49–74). New York: Wiley.Google Scholar
  31. Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1–47.Google Scholar
  32. Sutton, J. (2000). Marshall’s Tendencies. Cambridge: The MIT Press.Google Scholar
  33. Tinbergen, J. (1939). Statistical Testing of Business Cycle Theories, vols. 1 and 2, League of Nations, Geneva.Google Scholar
  34. Tinbergen, J. (1940). Reply to Keynes. The Economic Journal, 50, 141–154.CrossRefGoogle Scholar
  35. Wold, H. (1956). Causal inference from observation data. Journal of the Royal Statistical Society, 119, 28–60.CrossRefMathSciNetGoogle Scholar
  36. Yule, G. U. (1899). An investigation into the causes of changes in pauperism in England, chiefly during the last two intercensal decades. Journal of the Royal Statistical Society, 62, 249–295.CrossRefGoogle Scholar
  37. Zeisel, H., & Kaye, D. (1997). Prove It with Figures: Empirical Methods in Law and Litigation. New York: Springer.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Yuzo Hosoya
    • 1
    Email author
  • Kosuke Oya
    • 2
  • Taro Takimoto
    • 3
  • Ryo Kinoshita
    • 4
  1. 1.Tohoku UniversitySendaiJapan
  2. 2.Osaka UniversityToyonakaJapan
  3. 3.Kyushu UniversityFukuokaJapan
  4. 4.Tokyo Keizai UniversityKokubunjiJapan

Personalised recommendations