Skip to main content

Protein Function Prediction from Protein Interaction Network Using Bottom-up L2L Apriori Algorithm

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

Detection of unannotated protein functions in a protein interaction network generates a lot of beneficial information in the field of drug discovery of various kinds of diseases. Though most of the various computational methods have succeeded in predicting functions of huge amount of unknown proteins at recent times but the main problem is the simultaneous increase of false positives in most of the predicted results. In this work, a bottom-up predictor of existing Apriori algorithm has been implemented for protein function prediction by exploiting two most important neighborhood properties: closeness centrality and edge clustering coefficient of protein interaction network. The method is also unique in the fact that the functions of the leaf nodes in the interaction network have been back propagated and thus labeled up to the root node (target protein) using a bottom-up level to level approach. An overall precision, recall and F-score of 0.86, 0.65 and 0.74 respectively have been obtained in this work which are found to be better than most of the current state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000)

    Article  Google Scholar 

  2. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast. 18, 523–531 (2001)

    Article  Google Scholar 

  3. Chen, J., Hsu, W., Lee, M.L., Ng, S.-K.: Labeling network motifs in protein interactomes for protein function prediction. In: IEEE 23rd International Conference on Data Engineering, pp. 546–555. IEEE (2007)

    Google Scholar 

  4. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol. 21, 697–700 (2003)

    Article  Google Scholar 

  5. Karaoz, U., Murali, T.M., Letovsky, S., Zheng, Y., Ding, C., Cantor, C.R., Kasif, S.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl. Acad. Sci. U. S. A. 101, 2888–2893 (2004)

    Article  Google Scholar 

  6. Deng, M., Mehta, S., Sun, F., Chen, T.: Inferring domain–domain interactions from protein–protein interactions. Genome Res., 1540–1548 (2002)

    Google Scholar 

  7. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(Suppl 1), i302–310 (2005)

    Article  Google Scholar 

  8. Wu, D.D.: An efficient approach to detect a protein community from a seed. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–7. IEEE (2005)

    Google Scholar 

  9. Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19, i197–i204 (2003)

    Article  Google Scholar 

  10. Arnau, V., Mars, S., Marín, I.: Iterative cluster analysis of protein interaction data. Bioinformatics 21, 364–378 (2005)

    Article  Google Scholar 

  11. Samanta, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. Natl. Acad. Sci. U. S. A. 100, 12579–12583 (2003)

    Article  Google Scholar 

  12. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)

    Article  Google Scholar 

  13. Asthana, S., King, O.D., Gibbons, F.D., Roth, F.P.: Predicting protein complex membership using probabilistic network reliability. Genome Res. 14, 1170–1175 (2004)

    Article  Google Scholar 

  14. Xiong, W., Liu, H., Guan, J., Zhou, S.: Protein function prediction by collective classification with explicit and implicit edges in protein-protein interaction networks. BMC Bioinf. 14(Suppl 1), S4 (2013)

    Article  Google Scholar 

  15. Saha, S., Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M.: Improving prediction of protein function from protein interaction network using intelligent neighborhood approach. In: International Conference on Communications, Devices and Intelligent Systems (CODIS), pp. 584–587. IEEE (2012)

    Google Scholar 

  16. Saha, S., Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M.: FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis. Cell. Mol. Biol. Lett. 19, 675–691 (2014)

    Article  Google Scholar 

  17. Saha, S., Chatterjee, P.: Protein function prediction from protein interaction network using physico-chemical properties of amino acids. Int. J. Pharm. Biol. Sci. 4, 55–65 (2014)

    Google Scholar 

  18. Piovesan, D., Giollo, M., Leonardi, E., Ferrari, C., Tosatto, S.C.E.: INGA: protein function prediction combining interaction networks, domain assignments and sequence similarity. Nucleic Acids Res. 43, W134–140 (2015)

    Article  Google Scholar 

  19. Zhao, B., Wang, J., Member, S., Li, M., Li, X., Li, Y.: A new method for predicting protein functions from dynamic weighted interactome networks. IEEE Trans. Nanobiosci. 15, 131–139 (2016)

    Article  Google Scholar 

  20. Wu, Q., Ye, Y., Ng, M.K., Ho, S.-S., Shi, R.: Collective prediction of protein functions from protein-protein interaction networks. BMC Bioinf. 15(Suppl 2), S9 (2014)

    Article  Google Scholar 

  21. Sandhan, T., Yoo, Y., Choi, J.Y., Kim, S.: Graph pyramids for protein function prediction. BMC Med. Genomics 8, S12 (2015)

    Article  Google Scholar 

  22. Huang, L., Liao, L., Wu, C.H.: Inference of protein-protein interaction networks from multiple heterogeneous data. EURASIP J. Bioinforma. Syst. Biol. 2016, 8 (2016)

    Article  Google Scholar 

  23. Saha, S., Chatterjee, P., Basu, S., Nasipuri, M.: Gene ontology based function prediction of human protein using protein sequence and neighborhood property of PPI network. In: Satapathy, S.C., Bhateja, V., Udgata, Siba K., Pattnaik, P.K. (eds.) Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications. AISC, vol. 516, pp. 109–118. Springer, Singapore (2017). doi:10.1007/978-981-10-3156-4_11

    Chapter  Google Scholar 

  24. Saha, S., Chatterjee, P., Basu, S., Nasipuri, M.: Functional group prediction of un-annotated protein by exploiting its neighborhood analysis in saccharomyces cerevisiae protein interaction network. In: Chaki, R., Saeed, K., Cortesi, A., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 568, pp. 165–177. Springer, Singapore (2017). doi:10.1007/978-981-10-3391-9_11

    Chapter  Google Scholar 

  25. Zhao, B., Hu, S., Li, X., Zhang, F., Tian, Q., Ni, W.: An efficient method for protein function annotation based on multilayer protein networks. Hum. Genomics. 10, 1–15 (2016)

    Article  Google Scholar 

  26. Peng, W., Wang, J., Wang, W., Liu, Q., Wu, F.-X., Pan, Y.: Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. BMC Syst. Biol. 6, 87 (2012)

    Article  Google Scholar 

  27. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  28. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks. 1, 215–239 (1978)

    Article  Google Scholar 

  29. Opsahl, T., Agneessens, F., Skvoretz, J.: Article Node centrality in weighted networks Generalizing degree and shortest paths. Soc. Networks (2010)

    Google Scholar 

  30. Moosavi, S., Rahgozar, M., Rahimi, A.: Protein function prediction using neighbor relativity in protein-protein interaction network. Comput. Biol. Chem. 43, 11–16 (2013)

    Article  Google Scholar 

  31. Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M., Plewczynski, D.: PPI_SVM: prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables. Cell. Mol. Biol. Lett. 16, 264–278 (2011)

    Article  Google Scholar 

  32. Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M., Plewczynski, D.: PSP_MCSVM: brainstorming consensus prediction of protein secondary structures using two-stage multiclass support vector machines. J. Mol. Model. 17, 2191–2201 (2011)

    Article  Google Scholar 

  33. Chatterjee, P., Basu, S., Zubek, J., Kundu, M., Nasipuri, M., Plewczynski, D.: PDP-RF: Protein Domain Boundary Prediction Using Random Forest Classifier. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, Sankar K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 441–450. Springer, Cham (2015). doi:10.1007/978-3-319-19941-2_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Prasad, A., Saha, S., Chatterjee, P., Basu, S., Nasipuri, M. (2017). Protein Function Prediction from Protein Interaction Network Using Bottom-up L2L Apriori Algorithm. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6430-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6429-6

  • Online ISBN: 978-981-10-6430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics