Skip to main content

On Energy Efficient Cooperative Spectrum Sensing Using Possibilistic Fuzzy C-Means Clustering

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 775))

Abstract

Fuzzy c-means (FCM) clustering is extensively used on the energy detection based cooperative spectrum sensing (CSS) to enhance the efficiency of the system. The performance of FCM degrades at low signal-to-noise ratio (SNR) due to the non-spherical energy values at fusion center (FC). The proposed work explores the scope of possibilistic fuzzy c-means (PFCM) algorithm in noisy data set. PFCM combines the fuzzy membership function and the possibilistic information in the clustering process to partition the inseparable data into the respective clusters. The work also investigates the energy consumption by the secondary users (SUs) under the constraint of the predefined primary user (PU) detection threshold. A large set of simulation results illustrate the superiority of the proposed scheme compared to the existing techniques performed in the similar framework.

This is a preview of subscription content, log in via an institution.

References

  1. Federal Communications Commission, Spectrum policy task force, Rep. ET Docket no. 02-135 (2002)

    Google Scholar 

  2. OFCOM, Digital Dividend Review, a statement on our approach towards awarding the digital dividend (2007)

    Google Scholar 

  3. Mitola, J.: Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation, Computer Communication System Laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000

    Google Scholar 

  4. Haykin, S., Setoodeh, P.: Cognitive radio networks: the spectrum supply chain paradigm. IEEE Trans. Cognit. Commun. Netw. 1(1), 3–28 (2015)

    Article  Google Scholar 

  5. Bhatti, D.M.S., Nam, H.: Spatial correlation based analysis of soft combination and user selection algorithm for cooperative spectrum sensing. IET Commun. 11(1), 39–44 (2017)

    Article  Google Scholar 

  6. Mingchuan, Y., Yuan, L., Xiaofeng, L., Wenyan, T.: Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks. China Commun. 12(9), 35–44 (2015)

    Article  Google Scholar 

  7. Sobron, I., Diniz, P., Martins, W., Velez, M.: Energy detection technique for adaptive spectrum sensing. IEEE Trans. Commun. 63(3), 617–627 (2015)

    Article  Google Scholar 

  8. Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009)

    Article  Google Scholar 

  9. Sun, W., Huang, Z., Wang, F., Wang, X.: Compressive wideband spectrum sensing based on single channel. Electron. Lett. 51(9), 693–695 (2015)

    Article  Google Scholar 

  10. Zeng, Y., Liang, Y.C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)

    Article  Google Scholar 

  11. Xinzhi, Z., Feifei, G., Rong, C., Tao, J.: Matched filter based spectrum sensing when primary user has multiple power levels. Chaina Commun. 12(2), 21–31 (2015)

    Article  Google Scholar 

  12. Xu, Y.L., Zhang, H.S., Han, Z.H.: The performance analysis of spectrum sensing algorithms based on wavelet edge detection. In: Proceedings of 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), pp. 1–4 (2009)

    Google Scholar 

  13. Zhang, Y., Zhang, Q., Wu, S.: Entropy-based robust spectrum sensing in cognitive radio. IET Commun. 4(4), 428–436 (2010)

    Article  Google Scholar 

  14. Sedighi, S., Taherpour, A., Monfared, S.: Bayesian generalised likelihood ratio test-based multiple antenna spectrum sensing for cognitive radios. IET Commun. 7(18), 2151–2165 (2013)

    Article  Google Scholar 

  15. Jaglan, R.R., Sarowa, S., Mustafa, R., Agrawal, S., Kumar, N.: Comparative study of single-user spectrum sensing techniques in cognitive radio networks. Procedia Comput. Sci. 58, 121–128 (2015)

    Article  Google Scholar 

  16. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)

    Article  Google Scholar 

  17. Huang, S., Chen, H., Zhang, Y., Zhao, F.: Energy-efficient cooperative spectrum sensing with amplify-and-forward relaying. IEEE Commun. Lett. 16(4), 450–453 (2012)

    Article  Google Scholar 

  18. Paul, A., Maity, S.P.: Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing. Digital Commun. Netw. 2(4), 196–205 (2016)

    Article  Google Scholar 

  19. Maity, S.P., Chatterjee, S., Acharya, T.: On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Dig. Sig. Process. 49, 104–115 (2016)

    Article  Google Scholar 

  20. Chatterjee, S., Banerjee, A., Acharya, T., Maity, S.P.: Fuzzy c-means clustering in energy detection for cooperative spectrum sensing in cognitive radio system. In: Jonsson, M., Vinel, A., Bellalta, B., Belyaev, E. (eds.) MACOM 2014. LNCS, vol. 8715, pp. 84–95. Springer, Cham (2014). doi:10.1007/978-3-319-10262-7_8

    Google Scholar 

  21. Bhargavi, D., Murthy, C.: Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: Proceedings of IEEE Eleventh International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2010)

    Google Scholar 

  22. So, J.: Energy-efficient cooperative spectrum sensing with a logical multi-bit combination rule. IEEE Commun. Lett. 20(12), 2538–2541 (2016)

    Article  Google Scholar 

  23. Awin, F.A., Abdel-Raheem, E., Ahmadi, M.: Designing an optimal energy efficient cluster-based spectrum sensing for cognitive radio networks. IEEE Commun. Lett. 20(9), 1884–1887 (2016)

    Article  Google Scholar 

  24. Cicho, K., Kliks, A., Bogucka, H.: Energy-efficient cooperative spectrum sensing: a survey. IEEE Commun. Surv. Tutor. 18(3), 1861–1886 (2016)

    Article  Google Scholar 

  25. Jiao, Y., Yin, P., Joe, I.: Clustering scheme for cooperative spectrum sensing in cognitive radio networks. IET Commun. 10(13), 1590–1595 (2016)

    Article  Google Scholar 

  26. Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst. 161(4), 522–543 (2010)

    Article  MathSciNet  Google Scholar 

  27. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  28. Zhao, X., Zhang, S.: An improved KFCM algorithm based on artificial bee colony. In: Deng, H., Miao, D., Wang, F.L., Lei, J. (eds.) AICI 2011. CCIS, vol. 237, pp. 190–198. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24282-3_26

    Chapter  Google Scholar 

  29. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  30. Shang, R., Tian, P., Wen, A., Liu, W., Jiao, L.: An intuitionistic fuzzy possibilistic c-means clustering based on genetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 941–947, July 2016

    Google Scholar 

  31. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  32. Almeida, R.J., Kaymak, U., Sousa, J.M.C.: Fuzzy rule extraction from typicality and membership partitions. In: Proceedings of IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1964–1970, June 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anal Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Paul, A., Maity, S.P. (2017). On Energy Efficient Cooperative Spectrum Sensing Using Possibilistic Fuzzy C-Means Clustering. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 775. Springer, Singapore. https://doi.org/10.1007/978-981-10-6427-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6427-2_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6426-5

  • Online ISBN: 978-981-10-6427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics