Skip to main content

Stock Price Forecasting with Empirical Mode Decomposition Based Ensemble \(\nu \)-Support Vector Regression Model

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

Stock price forecasting is one of the most challenging tasks of time series forecasting due to the inherent non-linearity and non-stationary characteristics of the stock market and financial time series. In this paper, an ensemble method composed of Empirical Mode Decomposition (EMD) algorithm and \(\nu \)-Support Vector Regression (\(\nu \)-SVR) is presented for short-term stock price forecasting. First of all, the historical stock price time series were decomposed into several intrinsic mode functions (IMFs). Then each IMF was modeled by a \(\nu \)-SVR model to generate the corresponding forecasting IMF value. Finally, the prediction results of all IMFs were combined to formulate an aggregated output for stock price. The stock market price datasets of three power related companies are used to test the effectiveness of the proposed EMD-\(\nu \)-SVR method. Simulation results demonstrated attractiveness of the proposed method compared with six forecasting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yahoo finance, April 2017. http://www.finance.yahoo.com/

  2. Alhamdoosh, M., Wang, D.: Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264, 104–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asadi, S., Hadavandi, E., Mehmanpazir, F., Nakhostin, M.M.: Hybridization of evolutionary LevenbergMarquardt neural networks and data pre-processing for stock market prediction. Knowl. Based Syst. 35, 245–258 (2012)

    Article  Google Scholar 

  4. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day Series in Time Series Analysis and Digital Processing. Holden-Day, San Francisco (1976)

    Google Scholar 

  6. Breiman, L.: Stacked regressions. Mach. Learn. 24, 49–64 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Chang, C.C., Lin, C.J.: Training \(\nu \)-support vector regression: theory and algorithms. Neural Comput. 14, 1959–1977 (2002)

    Article  MATH  Google Scholar 

  8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  11. Darbellay, G.A., Slama, M.: Forecasting the short-term demand for electricity: do neural networks stand a better chance? Int. J. Forecast. 16, 71–83 (2000)

    Article  Google Scholar 

  12. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  14. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)

    Google Scholar 

  15. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1008 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  17. Guan, C., Luh, P.B., Michel, L.D., Wang, Y., Friedland, P.B.: Very short-term load forecasting: wavelet neural networks with data pre-filtering. IEEE Trans. Power Syst. 28(1), 30–41 (2013)

    Article  Google Scholar 

  18. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, London (1999). International edition

    Google Scholar 

  19. He, K., Zha, R., Wu, J., Lai, K.K.: Multivariate EMD-based modeling and forecasting of crude oil price. Sustainability 8(4), 387 (2016)

    Article  Google Scholar 

  20. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20, 5–10 (2004)

    Article  Google Scholar 

  21. Hooshmand, R.A., Amooshahi, H., Parastegari, M.: A hybrid intelligent algorithms based short-term load forecasting approach. Int. J. Electr. Power Energ. Syst. 45, 313–324 (2013)

    Article  Google Scholar 

  22. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Roy. Soc. London A. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M., Hussain, O.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13, 947–958 (2013)

    Article  Google Scholar 

  24. Jae Kim, K., Han, I.: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Exp. Syst. Appl. 19, 125–132 (2008)

    Google Scholar 

  25. Kohavi, R., Provost, F.: Glossary of terms. Mach. Learn. 30, 271–274 (1998)

    Article  Google Scholar 

  26. Liu, H., Chen, C., Tian, H., Li, Y.: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energ. 48, 545–556 (2012)

    Article  Google Scholar 

  27. Nemenyi, P.: Distribution-free Multiple Comparisons. Princeton University, Princeton (1963)

    Google Scholar 

  28. Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 5, 1535–1547 (1990)

    Article  Google Scholar 

  29. Qiu, X., Ren, Y., Suganthan, P.N., Amaratumga, G.A.J.: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 54, 246–255 (2017)

    Article  Google Scholar 

  30. Qiu, X., Suganthan, P.N., Amaratunga, G.A.J.: Electricity load demand time series forecasting with empirical mode decomposition based random vector functional link network. In: Proceedings of IEEE Conference on Systems, Man and Cybernetics (SMC 2016), Budapest, Hungary, December 2016

    Google Scholar 

  31. Qiu, X., Zhang, L., Ren, Y., Suganthan, P.N., Amaratunga, G.: Ensemble deep learning for regression and time series forecasting. In: Proceedings of IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), Orlando, US, December 2014

    Google Scholar 

  32. Ren, Y., Suganthan, P.N., Srikanth, N., Amaratunga, G.: Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. 367–368, 1078–1093 (2016)

    Article  Google Scholar 

  33. Ren, Y., Zhang, L., Suganthan, P.: Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput. Intell. Mag. 11(1), 41–53 (2016). [review article]

    Article  Google Scholar 

  34. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)

    Article  Google Scholar 

  35. Sousa, J.C., Jorge, H.M., Neves, L.P.: Short-term load forecasting based on support vector regression and load profiling. Int. J. Energ. Res. 38(3), 350–362 (2014)

    Article  Google Scholar 

  36. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    Google Scholar 

  37. Wang, J., Hou, R., Wang, C., Shen, L.: Improved \(\nu \)-Support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Appl. Soft Comput. 49, 164–178 (2016)

    Article  Google Scholar 

  38. Ye, L., Liu, P.: Combined model based on emd-svm for short-term wind power prediction. Proc. Chin. Soc. Electr. Eng. (CSEE) 31, 102–108 (2011)

    Google Scholar 

  39. Yeh, C.Y., Huang, C.W., Lee, S.J.: A multiple-kernel support vector regression approach for stock market price forecasting. Expert Syst. Appl. 38, 2177–2186 (2010)

    Article  Google Scholar 

  40. Ying, L.C., Pan, M.C.: Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energ. Convers. Manag. 49, 205–211 (2008)

    Article  Google Scholar 

  41. Yu, L., Wang, S., Lai, K.K.: A neural-network-based nonlinear metamodeling approach to financial time series forecasting. Appl. Soft Comput. 9, 563–574 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This project is funded by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Suganthan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Qiu, X., Zhu, H., Suganthan, P.N., Amaratunga, G.A.J. (2017). Stock Price Forecasting with Empirical Mode Decomposition Based Ensemble \(\nu \)-Support Vector Regression Model. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 775. Springer, Singapore. https://doi.org/10.1007/978-981-10-6427-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6427-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6426-5

  • Online ISBN: 978-981-10-6427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics