Skip to main content

Integration of High Spectral and High Spatial Resolution Image Data for Accurate Target Detection

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

This study has attempted to generate a fused image that comprises fine spectral characteristics of hyperspectral data and greater spatial details of multispectral data. N-FINDR has been applied to extract pure endmembers from hyperspectral data. The projected methodology in this study has re-sampledspectral bands of endmembers in the green, red and infra-red regions of hyperspectral data to the respective wavelength regions in multispectral data. The abundance of these endmembers in multispectral image hasbeen estimated through Linear Spectral Unmixing of multispectral data taking the re-sampled endmembers as input. New fused pixels are generated after applying Linear Model on hyperspectral data with the estimated abundances. The fused image contains spatial and spectral details of multispectral and hyperspectral data respectively enabling more accurate target identification. Normalized Cross Correlation of fused image pixels has shown more than 80% correlation with hyperspectral spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Duran, O., Petrous, M.: Mixed Pixel Classification in Remote Sensing –Literature Survey. University of Surrey, Guildford (2004). http://www.hep.upatras.gr/research/download/TR-1-2004.pdf

  2. Villa, A., Chanussot, J., Benediktsson, J.A., Ulfarsson, M., Jutten, C.: Super-resolution: an efficient method to improve spatial resolution of hyperspectral images. In: IGARS (2010). https://hal.archives-ouvertes.fr/hal-00578956/document

  3. Naidu, V.P.S., Raol, J.R.: Pixel-level image fusion using wavelets and principal component analysis. Defence Sci. J. 58(3), 338–352 (2008). https://www.researchgate.net/profile/Dr_Vps_Naidu2/publication/37181544_Pixel-lev-el_Image_Fusion_using_Wavelets_and_Principal_Component_Analysis/links/5562b79a08ae86c06b65f596/Pixel-level-Image-Fusion-using-Wavelets-and-Principal-Component-Analysis.pdf

  4. Licciardi, G.A., Khan, M.M., Chanussot, J., Montanvert, A., Condat, L., Jutten, C.: Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA BAND reduction. EURASIP J. Adv. Sig. Process. (2012). doi:10.1186/1687-6180-2012-207. http://asp.eurasipjournals.springeropen.com/articles/10.1186/1687-6180-2012-207

  5. Maurer, T.: How to pan-sharpen images using the gram-schmidt pan-sharpening method. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Hannover Workshop, Hannover, Germany, vol. XL-1/W1, pp. 239–244 (2013). http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W1/239/2013/isprsarchives-XL-1-W1-239-2013.pdf

  6. Klonus, S., Ehlers, M.: Performance of evaluation methods in image fusion. In: 12th International Conference on Information Fusion Seattle, WA, USA (2009). http://fusion.isif.org/proceedings/fusion09CD/data/papers/0136.pdf

  7. Al-Wassai, F., Kalyankar, N., Zuky, A.: The IHS transformations based image fusion. Comput. Vis. Pattern Recognit. (cs.CV) (2011). https://arxiv.org/ftp/arxiv/papers/1107/1107.4396.pdf

  8. Krista, A., et al.: Wavelet based image fusion technique- an introduction, review and comparison. ISPRS J. Photogram. Remote Sens. 62(4), 249–263 (2007)

    Article  Google Scholar 

  9. Chakravorty, S., Chakrabarti, S.: Pre-processing of hyperspectral data: a case study of Henry and Lothian Islands in Sunderban Region, West Bengal, India. Int. J. Geomatics Geosci. 2(2), 490–501 (2011). ISSN: 0976–4380. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.421.9016&rep=rep1&type=pdf

  10. Jensen, J.R.: Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd edn. Prentice Hall, Inc., Old Tappan (1996)

    Google Scholar 

  11. Khandelwal, A., Rajan, K.S.: Hyperspectral image enhancement based on sensor simulation and vector decompostion (2011). ISBN: 978-1-4577-0267-9. http://researchweb.iiit.ac.in/~ankush.khandelwal/paper/Paper1.pdf

  12. Plaza, A., Martínez, P., Pérez, R., Plaza, J.: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 42(3), 650–663 (2004). http://www.umbc.edu/rssipl/people/aplaza/Papers/Journals/2004.TGARS.Quantitative.pdf

  13. Winter, M.E.: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: Proceedings of Imaging Spectrometry V, vol. 3753, pp. 266–277. SPIE (1999). doi:10.1117/12.366289

  14. Bieniarz, J., Cerra, D., Avbelj, J., Reinartz, P., Muller, R.: Hyperspectral image resolution enhancement based on spectral unmixing and information fusion. In: Hannover Workshop on High-Resolution Earth Imaging for Geospatial Information, ISPRS, vol. XXXVIII-4-W19, pp. 33–38 (2011). http://elib.dlr.de/72671/1/contribution181.pdf

  15. Keshava, N., Mustard, J.: Spectral unmixing. IEEE Sig. Process. Mag. 19(1), 44–57 (2002). https://www.researchgate.net/profile/John_Mustard/publication/3321402_Spectral_Unmixing/links/56eaaf1808ae7858657fe55b.pdf. USA

  16. Dimitris, M., Siracusa, C., Shaw G.: Hyperspectral subpixel target detection using the linear mixing model. IEEE Trans. Geosci. Remote Sens. 39(7), 1392–1409 (2001). doi:10.1109/36.934072

  17. Chakravortty, S.: Analysis of endmember detection and subpixel classification algorithms on hyperspectral imagery for tropical mangrove species discrimination in the Sunderbans Delta, India. J. Appl. Remote Sens. 7(1), 073523 (2013). doi:10.1117/1.JRS.7.073523

  18. Briechle, K., Uwe., Hanebeck, D.: Template matching using fast normalised cross correlation. In: Proceeding of SPIE, Aero-Sense Symposium, Orlando, Florida, vol. 4387, pp. 95–102 (2001). doi:10.1117/12.421129

  19. Xu, X., Tong, X., Plaza, A., Zhong, Y., Xie, H., Zhang, L.: Using linear spectral unmixing for subpixel mapping of hyperspectral imagery: a quantitative assessment. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PP(99), 1–12 (2016). doi:10.1109/JSTARS.2016.2624560

  20. Singh, R., Gupta, R.: Improvement of classification accuracy using image fusion techniques. In: International Conference on Computational Intelligence and Applications (ICCIA), pp. 36–40 (2016). doi:10.1109/ICCIA.2016.21

  21. Chakravortty, S., Sinha, D.: Performance of pure pixel extraction algorithms on hyperspectral data for species level classification of Mangroves. In: Fourth International Conference of Emerging Applications of Information Technology, pp. 209–214 (2014). doi:10.1109/EAIT.2014.18

  22. Li, T., Zhang, J., Chen, X.: Resolution enhancement of hyperspectral images using distortion optimization. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 45–48 (2015). doi:10.1109/IGARSS.2015.7325693

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somdatta Chakravortty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Chakravortty, S., Das, S. (2017). Integration of High Spectral and High Spatial Resolution Image Data for Accurate Target Detection. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 775. Springer, Singapore. https://doi.org/10.1007/978-981-10-6427-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6427-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6426-5

  • Online ISBN: 978-981-10-6427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics