Skip to main content

Local Resonant Structures

  • Chapter
  • First Online:
New Acoustics Based on Metamaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1543 Accesses

Abstract

The local resonance in the material was discovered in 2000. Since then, it has been developed as an acoustical metamaterial. The local resonance enables negative mass density and negative bulk modulus. A detailed description of the physics of local resonance is given. This is followed by several applications and even a list of potential areas under the early stage of development is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  2. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  3. Sigalas, M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)

    Article  Google Scholar 

  4. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  5. Yablonovitch, E., Gmitter, T.J.: Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63, 1950–1953 (1989)

    Article  Google Scholar 

  6. Martínez-Sala, R., Sancho, J., Sánchez, J.V., Gómez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378, 241 (1995)

    Article  Google Scholar 

  7. Montero de Espinosa, F.R., Jiménez, E., Torres, M.: Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998)

    Article  Google Scholar 

  8. Chang, L.L., Esaki, L.: Semiconductor quantum heterostructures. Phys. Today 45, 36 (1992)

    Article  Google Scholar 

  9. Sheng, P. (ed.): Scattering and Localization of Classical Waves in Random Media. World Scientific, Singapore (1990)

    Google Scholar 

  10. Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377 (1992)

    Article  Google Scholar 

  11. Kushwaha, M.S., et al.: Theory of acoustic band structure of periodic elastic composites. P. Rev. B 149, 2313–2322 (1993)

    Google Scholar 

  12. Kushwaha, M. S., Halevi, P.: Band-gap engineering in periodic elastic composites. Appl. Phys. Lett. 64, 1085–10900 (1994)

    Google Scholar 

  13. Economou, E.N., Sigalas, M.M.: Elastic and acoustic wave band structure. J. Acoust. Soc. Am. 95, 1735 (1994)

    Article  Google Scholar 

  14. Sanchez-Perez, J.V., et al.: Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325 (1998)

    Google Scholar 

  15. Torres, M., Montero de Espinosa, F.R., Garcia-Pablos, D., Garcia, N.: Sonic band gaps in finite elastic media:surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 82, 3054 (1999)

    Article  Google Scholar 

  16. Kafesaki, M., Economou, E.N.: Multiple scattering theory for three-dimensional periodic acoustic composites. Phy. Rev. B. 60, 11993–12001 (1999)

    Article  Google Scholar 

  17. Korringa, J.: On the calculation of the energy of a Bloch wave in a metal. Physica (Amsterdam) XIII, 392 (1947)

    Google Scholar 

  18. Kohn, W., Rostoker, N.: Solution of the Schrondinger equation in periodic lattices with application to metallic lithium. Phys. Rev. 94, 1111 (1951)

    Article  Google Scholar 

  19. Ashcroft, N., Mermin, D.N.: Solid State Physics. Holt, Rinehart and Winston, New York (1976)

    Google Scholar 

  20. Economou, E.N.: Green’s Functions in Quantum Physics. Springer, Berlin (1983)

    Book  Google Scholar 

  21. Economou, E.N., Sigalas, M.M.: Stopband for elastic waves in periodic composite materials. J. Acoust. Soc. Am. 95, 1734 (1994)

    Article  Google Scholar 

  22. Kafesaki, M., Economou, E.N.: On the dynamics of locally resonant sonic composites. Phys. Rev. B 52, 1113317 (1995)

    Article  Google Scholar 

  23. Liu, Z., et al.: Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phy. Rev. B 62(4), 2446–2457 (2000)

    Google Scholar 

  24. Yang, S., et al.: Biosensors on surface acoustic wave phononic band gap structure. Phy. Rev. Lett. 88, 104301 (2002)

    Article  Google Scholar 

  25. Wolfe, J.P.: Imaging Phonons: Acoustic Wave Propagation in Solids. Cambridge University Press, Cambridge, England (1998)

    Book  Google Scholar 

  26. Zhang, X., Liu, Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phy. Lett. 85(2), 341–343 (2004)

    Article  Google Scholar 

  27. Luo, C., Johnson, S.C., Joannopuolos, J.D., Pendry, J.B.: All-angle negative refraction without negative refractive index. Phys. Rev. B 65, 201104 (2002)

    Article  Google Scholar 

  28. Luo, C., Johnson, S.C., Joannopuolos, J.D.: All-angle negatve refraction in a three dimensionally periodic photonic crystal. Appl. Phys. Lett. 81, 2352 (2002)

    Article  Google Scholar 

  29. Lai, Y., Zhang, X., Zhang, Z.Q.: Engineering acoustic band gaps. Appy. Phys. Lett. 79, 3224 (2001)

    Article  Google Scholar 

  30. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov. Phys. Uspekhi 10, 509–514 (1968)

    Article  Google Scholar 

  31. Ma, G., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2(2) (2016)

    Google Scholar 

  32. Shelby, R.A., Smith, D.R., Schultz S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Google Scholar 

  33. Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007)

    Article  Google Scholar 

  34. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005) (PubMed)

    Google Scholar 

  35. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006) (PubMed)

    Google Scholar 

  36. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007)

    Article  Google Scholar 

  37. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. Phys. Soc. A 463, 855–880 (2007)

    Article  Google Scholar 

  38. Mei, J., Ma, G., Yang, M., Yang, J., Sheng, P.: Acoustic Metamaterials and Phononic Crystals, pp. 159–199. Springer, New York (2013)

    Book  Google Scholar 

  39. Yao, S., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass–spring system. New J. Phys. 10, 043020 (2008)

    Article  Google Scholar 

  40. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  41. Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005)

    Article  Google Scholar 

  42. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Article  Google Scholar 

  43. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 70, 055602 (2004)

    Google Scholar 

  44. Lai, Y., Wu, Y., Sheng, P., Zhang, Z.-Q.: Hybrid elastic solids. Nat. Mater. 10, 620–624 (2011)

    Article  Google Scholar 

  45. Wu, Y., Lai, Y., Zhang, Z.-Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)

    Article  Google Scholar 

  46. Zui, C., Mondain-Monval, O.: Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14, 384–388 (2015)

    Google Scholar 

  47. Yang, M., Ma, G., Yang, Z., Sheng, P.: Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013)

    Article  Google Scholar 

  48. Ding, Y., Liu, Z., Qiu, C., Shi, J.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007)

    Article  Google Scholar 

  49. Christensen, J., Liang, Z., Willatzen, M.: Metadevices for the confinement of sound and broadband double-negativity behavior. Phys. Rev. B 88, 100301(R) (2013)

    Article  Google Scholar 

  50. Fok, L., Zhang, X.: Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011)

    Article  Google Scholar 

  51. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Acoustic metamaterial with negative density. Phys. Lett. A 373, 4464–4469 (2009)

    Google Scholar 

  52. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Acoustic metamaterial with negative modulus. J. Phys. Condens. Matter 21, 175704 (2009)

    Article  Google Scholar 

  53. Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G., Kim, C.K.: Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010)

    Article  Google Scholar 

  54. Kaina, N., Lemoult, F., Fink, M., Lerosey, G.: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015)

    Article  Google Scholar 

  55. Yang, Z., Mei, J., Yang, M., Chan, N.H., Sheng, P.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008) (PubMed)

    Google Scholar 

  56. Yang, M., Ma, G., Wu, Y., Yang, Z., Sheng, P.: Homogenization scheme for acoustic metamaterials. Phys. Rev. B 89, 064309 (2014)

    Article  Google Scholar 

  57. Park, J.J., Lee, K.J.B., Wright, O.B., Jung, M.K., Lee, S.H.: Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. Phys. Rev. Lett. 110, 244302 (2013) (PubMed)

    Google Scholar 

  58. Jing, Y., Xu, J., Fang, N.X.: Numerical study of a near-zero-index acoustic metamaterial. Phys. Lett. A 376, 2834–2837 (2012)

    Article  Google Scholar 

  59. Fleury, R., Alù, A.: Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013) (PubMed)

    Google Scholar 

  60. Yang, Z., Dai, H.M., Chan, N.H., Ma, G.C., Sheng, P.: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010)

    Article  Google Scholar 

  61. Naify, C.J., Chang, C.M., McKnight, G., Nutt, S.: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 108, 114905 (2010)

    Article  Google Scholar 

  62. Naify, C.J., Chang, C.M., McKnight, G., Scheulen, F., Nutt, S.: Membrane-type metamaterials: transmission loss of multi-celled arrays. J. Appl. Phys. 109, 104902 (2011)

    Article  Google Scholar 

  63. Naify, C.J., Chang, C.M., McKnight, G., Nutt, S.: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 110, 124903 (2011)

    Article  Google Scholar 

  64. Ma, G., Yang, M., Yang, Z., Sheng, P.: Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013)

    Article  Google Scholar 

  65. Yao, S., Zhou, X., Hu, G.: Investigation of the negative-mass behaviors occurring below a cut-off frequency. New J. Phys. 12, 103025 (2010)

    Article  Google Scholar 

  66. Pierre, J., Dollet, B., Leroy, V.: Resonant acoustic propagation and negative density in liquid foams. Phys. Rev. Lett. 112, 148307 (2014) (PubMed)

    Google Scholar 

  67. Lemoult, F., Fink, M., Lerosey G.: Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011) (PubMed)

    Google Scholar 

  68. Lemoult, F., Kaina, N., Fink, M., Lerosey, G.: Wave propagation control at the deep subwavelength scale in metamaterials. Nat. Phys. 9, 55–60 (2013)

    Article  Google Scholar 

  69. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000) (PubMed)

    Google Scholar 

  70. Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009) (PubMed)

    Google Scholar 

  71. Park, C.M., Park, J.J., Lee, S.H., Seo, Y.M., Kim, C.K., Lee, S.H.: Amplification of acoustic evanescent waves using metamaterial slabs. Phys. Rev. Lett. 107, 194301 (2011) (PubMed)

    Google Scholar 

  72. Park, J.J., Park, C.M., Lee, K.J.B., Lee, S.H.: Acoustic superlens using membrane-based metamaterials. Appl. Phys. Lett. 106, 051901 (2015)

    Google Scholar 

  73. Podolskiy, V.A., Narimanov, E.E.: Near-sighted superlens. Opt. Lett. 30, 75–77 (2005) (PubMed)

    Google Scholar 

  74. Liu, Z., Durant, S., Lee, H., Pikus, Y., Fang, N., Xiong, Y., Sun, C., Zhang, X.: Far-field optical superlens. Nano Lett. 7, 403–408 (2007) (PubMed)

    Google Scholar 

  75. Zhang, X., Liu, Z.: Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008) (PubMed)

    Google Scholar 

  76. Jacob, Z., Alekseyev, L.V., Narimanov, E.: Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006) (PubMed)

    Google Scholar 

  77. Christensen, J., García de Abajo, F.J.: Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108, 124301 (2012) (PubMed)

    Google Scholar 

  78. García-Chocano, V.M., Christensen, J., Sánchez-Dehesa, J.: Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014) (PubMed)

    Google Scholar 

  79. Shen, C., Xie, Y., Sui, N., Wang, W., Cummer, S.A., Jing, Y.: Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015) (PubMed)

    Google Scholar 

  80. Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    Article  Google Scholar 

  81. Schurig, D., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  Google Scholar 

  82. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  Google Scholar 

  83. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Comment on “scattering theory derivation of a 3D acousgtic cloaking shell”. http://aixiv.org/abs/0801.3279vl.,2008

  84. Lee, S.H., et al.: Composite acoustic medium with simultaneously negative density and modulus. In: Proceedings of ICSV17, Cairo, Egypt, July 2010

    Google Scholar 

  85. Gan, W.S.: Gauge invariance approach to acoustic fields. In: Akiyama, I. (ed.) Acoustical Imaging, vol. 29, pp. 389–394. Springer, The Netherlands (2007)

    Google Scholar 

  86. Cheng, Y., Xu, J.Y., Liu, X.J.: One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 77, 045134 (2008)

    Google Scholar 

  87. Cummer, S.A., Rahm, M., Schurig, D.: Material parameters and vector scaling in transformation acoustics. New J. Phys. 10, 115025–115034 (2008)

    Article  Google Scholar 

  88. Greenleaf, A., et al.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24, 413–419 (2003)

    Article  Google Scholar 

  89. Cummer, S.A., et al.: Scattering theory derivation of a 3D acoustic cloaking shell. Phy. Rev. Lett. 100, 024301 (2008)

    Google Scholar 

  90. Liang, Z., Li, J.: Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012)

    Article  Google Scholar 

  91. Li, Y., Cheng, J.C.: Unidirectional acoustic transmission through a prism with near-zero refractive index. Appl. Phys. Lett. 103, 053505 (2013)

    Google Scholar 

  92. Nguyen, V.C., Chen, L., Halterman, K.: Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett. 105, 233908 (2010)

    Article  Google Scholar 

  93. Wu, Y., Li, J.: Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett. 102, 183105 (2013)

    Article  Google Scholar 

  94. Wei, Q., Cheng, Y., Liu, X.-J.: Acoustic total transmission and total reflection in zero-index metamaterials with defects. Appl. Phys. Lett. 102, 174104 (2013)

    Article  Google Scholar 

  95. Liu, F., Liu, Z.: Elastic waves scattering without conversion in metamaterials with simultaneous zero indices for longitudinal and transverse waves. Phys. Rev. Lett. 115, 175502 (2015)

    Article  Google Scholar 

  96. Klipsch, P.W.: A low frequency horn of small dimensions. J. Acoust. Soc. Am. 13, 137–144 (1941)

    Article  Google Scholar 

  97. Liang, Z., Feng, T., Lok, S., Liu, F., Ng, K.B., Chan, C.H., Wang, J., Han, S., Lee, S., Li, J.: Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013)

    Article  Google Scholar 

  98. Xie, Y., Popa, B.-I., Zigoneanu, L., Cummer, S.A.: Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013)

    Article  Google Scholar 

  99. Frenzel, T., Brehm, J.D., Bückmann, T., Schittny, R., Kadic, M., Wegener, M.: Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 103, 061907 (2013)

    Article  Google Scholar 

  100. Molerón, M., Serra-Garcia, M., Daraio, C.: Acoustic Fresnel lenses with extraordinary transmission. Appl. Phys. Lett. 105, 114109 (2014)

    Article  Google Scholar 

  101. Li, Y., Liang, B., Zou, X.-Y., Cheng, J.-C.: Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl. Phys. Lett. 103, 063509 (2013)

    Article  Google Scholar 

  102. Cai, X., Guo, Q., Hu, G., Yang, J.: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Appl. Phys. Lett. 105, 121901 (2014)

    Article  Google Scholar 

  103. Li, Y., Liang, B., Tao, X., Zhu, X.-F., Zou, X.-Y., Cheng, J.-C.: Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012)

    Article  Google Scholar 

  104. Li, Y., Yu, G., Liang, B., Zou, X., Li, G., Cheng, S., Cheng, J.: Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 4, 6830 (2014)

    Article  Google Scholar 

  105. Tang, K., Qiu, C., Lu, J., Ke, M., Liu, Z.: Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits. J. Appl. Phys. 117, 024503 (2015)

    Article  Google Scholar 

  106. Cheng, Y., Zhou, C., Yuan, B.G., Wu, D.J., Wei, Q., Liu, X.J.: Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. 14, 1013–1019 (2015)

    Article  Google Scholar 

  107. Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y., Cheng, J.-C.: Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013)

    Article  Google Scholar 

  108. Li, Y., Jiang, X., Li, R.-Q., Liang, B., Zou, X.-Y., Yin, L.-L., Cheng, J.-C.: Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014)

    Article  Google Scholar 

  109. Mei, J., Wu, Y.: Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J. Phys. 16, 123007 (2014)

    Article  Google Scholar 

  110. Peng, P., Xiao, B., Wu, Y.: Flat acoustic lens by acoustic grating with curled slit. Phys. Lett. A. 378(45), 3389–3392 (2014)

    Google Scholar 

  111. Tang, K., Qiu, C., Ke, M., Lu, J., Ye, Y., Liu, Z.: Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci. Rep. 4, 6517 (2014)

    Article  Google Scholar 

  112. Li, Y., Jiang, X., Liang, B., Cheng, J.-C., Zhang, L.: Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4, 024003 (2015)

    Article  Google Scholar 

  113. Xie, Y., Konneker, A., Popa, B.-I., Cummer, S.A.: Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013)

    Google Scholar 

  114. Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., Cummer, S.A.: Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 5553 (2014)

    Article  Google Scholar 

  115. Arenas, J.P., Crocker, M.J.: Recent trends in porous sound-absorbing materials. J. Sound Vib. 44, 12–17 (2010)

    Google Scholar 

  116. Maa, D.-Y.: Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104, 2861–2866 (1998)

    Article  Google Scholar 

  117. Ma, G., Yang, M., Xiao, S., Yang, Z., Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014)

    Article  Google Scholar 

  118. Jiang, X., Liang, B., Li, R.-Q., Zou, X.-Y., Yin, L.-L., Cheng, J.-C.: Ultra-broadband absorption by acoustic metamaterials. Appl. Phys. Lett. 105, 243505 (2014)

    Article  Google Scholar 

  119. Wei, P., Croënne, C., Chu, S.T., Li, J.: Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104, 121902 (2014)

    Article  Google Scholar 

  120. Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., Page, J.H.: Superabsorption of acoustic waves with bubble metascreens. Phys. Rev. B 91, 020301 (2015)

    Article  Google Scholar 

  121. Piper, J.R., Liu, V., Fan, S.: Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014)

    Article  Google Scholar 

  122. Stansfeld, S.A., Matheson, M.P.: Noise pollution: non-auditory effects on health. Br. Med. 68, 243–257 (2003)

    Google Scholar 

  123. Nivison, M.E., Endresen, I.M.: An analysis of relationships among environmental noise, annoyance and sensitivity to noise, and the consequences for health and sleep. J. Behav. Med. 16(3) (1993)

    Google Scholar 

  124. City, Melbourne.: Proposed Amendments to Part F5 of the Building Code of Australia (BCA). City of Melbourne

    Google Scholar 

  125. London, A.: Transmission of reverberant sound through single walls. J. Res. Nat. Bureau Stand. 42(605) (1949)

    Google Scholar 

  126. Hall, A.J., Calius, E.P., Dodd, G., Wester, E.: Modelling and experimental validation of complex locally resonant structures. In: Proceedings of 20th International Congress on Acoustics, ICA 2010, 23–27 Aug, Sydney, Australia

    Google Scholar 

  127. Klironomos, A.D., Economou, E.N.: Elastic wave band gaps and single scattering. Solid State Commun. 105(5), 327–332 (1998). ISSN 0038-1098. doi:10.1016/S0038-1098(97)10048-5

  128. John, S.: Localization of light. Physics Today, 44 (1991)

    Google Scholar 

  129. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993). ISSN 0031-9007

    Google Scholar 

  130. Liu, Z., Chan, C.T., Sheng, P.: Threecomponent elastic wave band-gap material. Phys. Rev. B, 65(16), 165, 116 (2002). doi:10.1103/PhysRevB.65.165116

  131. Martinez-Sala, R., Sancho, J., Sanchez, J.V., Gomez, V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature, 378(6554), 241–241 (1995). http://dx.doi.org/10.1038/378241a0

  132. Fung, K.-H.: Phononic band gaps of locally resonant sonic materials with finite thickness. Master’s thesis, The Hong Kong University of Scienc and Technology (August 2004)

    Google Scholar 

  133. Liu, Z., Mao, Y., Zhu, Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science, 289(5485), 1734–1736 (2000). ISSN 1095-9203

    Google Scholar 

  134. Milton, G.W, Willis, J.R. On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463 (2007)

    Google Scholar 

  135. Yao, S., Zhou, X., Hu, G.: Experimental study on negative mass in a 1D mass-spring system. N. J. Phys. 10(4), 043,020 (11 pp) (2008)

    Google Scholar 

  136. Huang, H.H., Sun, C.T.: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. N. J. Phys. 11(1), 013,003 (15 pp) (2009)

    Google Scholar 

  137. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47(4), 610–617 (2009). ISSN 0020-7225. doi:10.1016/j.ijengsci.2008.12.007

  138. Gang, W., Yao-Zong, L., Ji-Hong, W., DianLong, Y.: Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals. Chin. Phys. 15(2), 407–411 (2006)

    Article  Google Scholar 

  139. Calius, E., Bremaud, X., Smith, B., Hall, A.: Negative mass sound shielding structures (2009) (in press)

    Google Scholar 

  140. Suzuki, H.: Resonance frequencies and loss factors of various single-degree-of-freedom systems. J. Acoust. Soc. Jpn. (E) 21 (2000)

    Google Scholar 

  141. Ho, K.M., Cheng, C.K., Yang, Z., Zhang, X.X., Sheng, P.: Broadband locally resonant sonic shields. Appl. Phys. Lett. 83(26), 5566–5568 (2003). doi:10.1063/1.1637152

    Article  Google Scholar 

  142. Yang, Z., Dai, H.M., Chan, N.H., Ma, G.C., Sheng, P.: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96(4), 041906 (2010). doi:10.1063/1.3299007

    Article  Google Scholar 

  143. Zhi-Ming, L., Sheng-Liang, Y., Xun, Z.: Ultrawide bandgap locally resonant sonic materials. Chin. Phys. Lett. 22(12), 3107 (2005)

    Article  Google Scholar 

  144. Oudich, M., Li, Y., Assouar, B.M., Hou, Z.: A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 12, 083049 (2010)

    Article  Google Scholar 

  145. Oudich, M., Senesi, M., Assouar, M.B., Ruzenne, M., Sun, J.-H., Vincent, B., Hou, Z., Wu, T.-T.: Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 165136 (2011)

    Article  Google Scholar 

  146. Rupin, M., Lemoult, F., Lerosey, G., Roux, P.: Experimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves. Phys. Rev. Lett. 112, 234301 (2014)

    Article  Google Scholar 

  147. Zhu, R., Liu, X.N., Huang, G.L., Huang, H.H., Sun, C.T.: Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density. Phys. Rev. B 86, 144307 (2012)

    Article  Google Scholar 

  148. Farhat, M., Guenneau, S., Enoch, S.: Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009)

    Article  Google Scholar 

  149. Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79, 033102 (2009)

    Article  Google Scholar 

  150. Stenger, N., Wilhelm, M., Wegener, M.: Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012)

    Article  Google Scholar 

  151. Colombi, A., Roux, P., Guenneau, S., Rupin, M.: Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. J. Acoust. Soc. Am. 137, 1783–1789 (2015)

    Article  Google Scholar 

  152. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014)

    Article  Google Scholar 

  153. Dubois, M., Farhat, M., Bossy, E., Enoch, S., Guenneau, S., Sebbah, P.: Flat lens for pulse focusing of elastic waves in thin plates. Appl. Phys. Lett. 103, 071915 (2013)

    Article  Google Scholar 

  154. Dubois, M., Bossy, E., Enoch, S., Guenneau, S., Lerosey, G., Sebbah, P.: Time-driven superoscillations with negative refraction. Phys. Rev. Lett. 114, 013902 (2015)

    Article  Google Scholar 

  155. Rupin, M., Catheline, S., Roux, P.: Super-resolution experiments on lamb waves using a single emitter. Appl. Phys. Lett. 106, 024103 (2015)

    Article  Google Scholar 

  156. Brûlé, S., Javelaud, E.H., Enoch, S., Guenneau, S.: Experiments on seismic metamaterials: Molding surface waves. Phys. Rev. Lett. 112, 133901 (2014)

    Article  Google Scholar 

  157. Milton, G.W., Cherkaev, A.V.: Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483–493 (1995)

    Article  Google Scholar 

  158. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  159. Kadic, M., Bückmann, T., Stenger, N., Thiel, M., Wegener, M.: On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012)

    Article  Google Scholar 

  160. Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012)

    Article  Google Scholar 

  161. Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014)

    Google Scholar 

  162. Bückmann, T., Thiel, M., Kadic, M., Schittny, R., Wegener, M.: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014)

    Article  Google Scholar 

  163. Della, G.C., Engheta, N.: Digital metamaterials. Nat. Mater. 13, 1115–1121 (2014)

    Article  Google Scholar 

  164. Xie, Y., Tsai, T.-H., Konneker, A., Popa, B.-I., Brady, D.J., Cummer, S.A.: Single-sensor multispeaker listening with acoustic metamaterials. Proc. Natl. Acad. Sci. U.S.A. 112, 10595–10598 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon Siong Gan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gan, W.S. (2018). Local Resonant Structures. In: New Acoustics Based on Metamaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6376-3_8

Download citation

Publish with us

Policies and ethics