Skip to main content

Energy Harvesting and Phononics

  • Chapter
  • First Online:
New Acoustics Based on Metamaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1365 Accesses

Abstract

Energy can be harvested from the heat energy produced by phonon–phonon interaction. Acoustical metamaterial in the form of phononic crystal will be used in the structure of the system for energy harvesting. Here, one needs to design the phononic crystal structure. To enable this, one needs to design the phononic crystal system’s dispersion relation and phonon–phonon interaction in the structure. A classical treatment using continuum medium is used. The thermoelectric efficiency is defined and its relation to the phononic crystal structure is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bloch, F.: Uber die Quantemechanikder Electroneninkristallgittern. Z. Phys. 52, 555 (1928)

    Article  Google Scholar 

  2. For a review, see El Boudouti, E.H., Djafari Rouhani, B., Akjouj, A., Dobrzynski, L.: Acoustic waves in solids and fluid layered materials. Surf. Sci. Rep. 64, 471 (2009)

    Google Scholar 

  3. Rytov, S.M.: Acoustical properties of a thinly laminated medium. Sov. Phys. Acoust. 2, 6880 (1956)

    Google Scholar 

  4. Sigalas, M.M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141 (1993)

    Article  Google Scholar 

  5. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993)

    Article  Google Scholar 

  6. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49, 2313 (1994)

    Article  Google Scholar 

  7. Sigalas, M.M., conomou, E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377 (1992)

    Google Scholar 

  8. Vasseur, J.O., Djafari-Rouhani, B., Dobrzynski, L., Kushwaha, M.S., Halevi,P.: Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy and some metallic systems. J. Phys.: Condens. Matter 7, 8759–8770 (1994)

    Google Scholar 

  9. For a review, see Sigalas, M.M., Kushwaha, M.S., Economou, E.N., Kafesaki, M., Psarobas, I.E., Steurer, W.: Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220, 765–809 (2005)

    Google Scholar 

  10. For a recent review, see Pennec, Y., Vasseur, J., Djafari Rouhani, B., Dobrzynski, L., Deymier, P.A.: Two-dimensional phononic crystals: examples and applications. Surf. Sci. Rep. 65, 229 (2010)

    Google Scholar 

  11. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Google Scholar 

  12. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Molding the Flow of Light, vol. 47. Princeton University Press, Princeton, 1995. 2 Fundamental Properties of Phononic Crystal

    Google Scholar 

  13. Psarobas, I.E., Modinos, A., Sainidou, R., Stefanou, N.: Acoustic properties of colloidal crystals. Phys. Rev. B 65, 064307 (2002)

    Google Scholar 

  14. Sainidou, R., Stefanou, N., Modinos, A.: Formation of absolute frequency gaps in threedimensional solid phononic crystals. Phys. Rev. B 66, 212301 (2002)

    Article  Google Scholar 

  15. Still, T., Cheng, W., Retsch, M., Sainidou, R., Wang, J., Jonas, U., Fytas, G.: Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films. Phys. Rev. Lett. 100, 194301 (2008)

    Article  Google Scholar 

  16. Croënne, C., Lee, E.J.S., Hu, H., Page, J.H.: Band gaps in phononic crystals: generation mechanisms and interaction effects. AIP Adv. 1, 041401 (2011)

    Article  Google Scholar 

  17. Liu, Z., Zhang, Y., Mao, Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Google Scholar 

  18. Torres, M., Montero de Espinosa, F.R., Garcia-Pablos, D., Garcia, N.: Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 82, 3054 (1999)

    Article  Google Scholar 

  19. Kafesaki, M., Sigalas, M.M., Garcia, N.: Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys. Rev. Lett. 85, 4044 (2000)

    Article  Google Scholar 

  20. Khelif, A., Djafari-Rouhani, B., VasseurJ. O., Deymier, P.A., Lambin, P., Dobrzynski, L.: Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Phys. Rev. B 65, 174308 (2002)

    Google Scholar 

  21. Khelif, A., Djafari-Rouhani, B., Vasseur, J.O., Deymier, P.A.: Transmission and dispersion relations of perfect and defect-contained waveguide structures in phononic band gap materials. Phys. Rev. B 68, 024302 (2003)

    Article  Google Scholar 

  22. Khelif, A., Djafari-Rouhani, B., Laude, V., Solal, M.: Coupling characteristics of localized phonons in photonic crystal fibers. J. Appl. Phys. 94, 7944–7946 (2003)

    Article  Google Scholar 

  23. Khelif, A., Chouja, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., Laude, V.: Trapping and guiding of acoustic waves by defect modes in a full band-gap ultrasonic crystal. Phys. Rev. B 68, 214301 (2003)

    Google Scholar 

  24. Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B., Laude, V.: Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400 (2004)

    Article  Google Scholar 

  25. Benchabane, S., Khelif, A., Choujaa, A., Djafari-Rouhani, B., Laude, V.: Interaction of waveguide and localized modes in a phononic crystal. Europhys. Lett. 71, 570 (2005)

    Google Scholar 

  26. Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Larabi, H., Khelif, A., Choujaa, A., Benchabane, S., Laude, V.: Acoustic channel drop tunneling in a phononic crystal. Appl. Phys. Lett. 87, 261912 (2005)

    Google Scholar 

  27. Esposito, G., Marmo, G., Sudarshan, G.: From Classical to Quantum Mechanics: An Introduction to the Formalism Foundations and Applications. Cambridge University Press, UK (2010)

    Google Scholar 

  28. Seol, J.H., Jo, I., Moore, A.L.: Two dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)

    Article  Google Scholar 

  29. Balandin, A., Wang, K.L.: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B. 58(3), 1544(1998)

    Google Scholar 

  30. Economou, E.N., Zdetsis, A.: Classical wave propagation in periodic structures. Phys. Rev. B 40, 1334 (1989)

    Article  Google Scholar 

  31. Liu, Z.Y., Zhang, X.X., Mao, Y.W., et al.: Locally resonant sonic materials. Science. 289, (5485), 1734(2000)

    Google Scholar 

  32. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, USA (1970)

    Google Scholar 

  33. Goldstone, J., Salam, A., Weinberg, S.: Broken symmetries. Phys. Rev. 127, 965 (1962)

    Article  Google Scholar 

  34. Miklowitz, J.: The Theory of Elastic Waves and Waveguides. North Holland Publishing Company, Netherlands, p.215 (1978)

    Google Scholar 

  35. Nye, J.F.: Physical Properties of Crystals: Their Representations by Tensors and Matrices. Oxford University Press, UK (1957)

    Google Scholar 

  36. Lax, M.J.: Symmetry Principles in Solid State and Molecular Physics. Wiley, USA (1974)

    Google Scholar 

  37. Wigner, E.P.: The Theory of Groups and Quantum mechanics. Methuen and Company, ‎London (1931)

    Google Scholar 

  38. Sternberg, S.: Group Theory and Physics. Cambridge University Press, UK (1995)

    Google Scholar 

  39. Poudel, B., Hao, Q., Ma, Y. et al.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 320(5876), 634(2008)

    Google Scholar 

  40. Simovski, C.R.: Material parameters of metamaterials. Opt. Spectrosc. 107, 726 (2009)

    Article  Google Scholar 

  41. Kafesaki, M., Economou, E.N.: Intepretation of the band structure results for elastic and acousticwaves by analogy with the LCAO Approach. Phys. Rev. N. 52(18), 13317 (1995)

    Google Scholar 

  42. Mei, J., Liu, Z., Wen, W., Sheng, P.: Effective dynamic mass density of composites. Phys. Rev. B. 76, 134205 (2007)

    Google Scholar 

  43. Still, T., Cheng, W., Retsch, M., Sainidou, R., et al.: Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloid films. Phys. Rev. Lett. 100, 194301 (2008)

    Article  Google Scholar 

  44. Ziman, J.: Electrons and Phonons. Clarendon Press, UK (1962)

    Google Scholar 

  45. Cloizeaux, J.D.: Analytical properties of n-dimensional energy bands and Wannier functions. Phys. Rev. 129, 554 (1963)

    Article  Google Scholar 

  46. Anderson, P.W.: More Is different. Science 177, 4047 (1972)

    Article  Google Scholar 

  47. Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Development. Springer Press, Berlin (2001)

    Google Scholar 

  48. Harmann, T.C., et al.: Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002)

    Article  Google Scholar 

  49. Venkatasubramaniam, R., Silvola, E., Colpitts, T., et al.: Thin-film thermoelectric devices with high room-termperature figures of merit. Nature 413(6856), 597 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon Siong Gan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gan, W.S. (2018). Energy Harvesting and Phononics. In: New Acoustics Based on Metamaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6376-3_7

Download citation

Publish with us

Policies and ethics