Skip to main content

Basic Mechanisms of Sound Propagation in Solids for Negative Materials

  • Chapter
  • First Online:
New Acoustics Based on Metamaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1374 Accesses

Abstract

The three basic forms of sound propagation in solids are diffraction, refraction and scattering. Acoustical metamaterials will enable the control and manipulation of these three mechanisms and hence the manipulation of the direction of sound propagation in solids. A detailed description of this three mechanisms for the case of negative mass density and negative bulk modulus enabling negative acoustical metamaterial are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)

    Article  Google Scholar 

  2. Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417–1429 (1969)

    Article  Google Scholar 

  3. Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Mishchenko, M.I., Trans, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  5. Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three-dimensions. J. Comput. Phys. 198, 211–242 (2004)

    Article  Google Scholar 

  6. Doicu, A., Wriedt, T., Eremin, Y.: Light Scattering by Systems of Particles, Null Field Method with Discrete Sources-theory and Programs. Springer, Berlin (2006)

    Book  Google Scholar 

  7. Mishchenko, M.I., Trans, L.D., Mackowski, D.W.: T matrix computation of light scattering by non-spherical particles, a review. J. Quant. Spectros. Radiat. Trans. 55, 535–575 (1996)

    Article  Google Scholar 

  8. Kahnert, F.M.: Numerical methods in electromagnetic scattering theory. J. Quant. Spectros. Radiant Tran. 79–80, 775–824 (2003)

    Article  Google Scholar 

  9. Li, J., Chan, C.T.: Double-negative acoustical metamaterial. Phys. Rev. E 70, 55602 (2004)

    Article  Google Scholar 

  10. Wu, Y., Lai, Y., Zhang, Z.: Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007)

    Google Scholar 

  11. Torrent, D., Sanchez-Dehesa, J.: Multiple scattering formulation of two- dimensional acoustic and electromagnetic metamaterials. New J. Physics 13, 093018 (2011)

    Article  Google Scholar 

  12. Torrent, D., Hkansson, A., Cervera, F., Sánchez-Dehesa, J.: Homogenization of two-dimensional clusters of rigid rods in air. Phy. Rev. Lett. 96, 204302 (2006)

    Google Scholar 

  13. Torrent, D., Sánchez-Dehesa, J.: Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Phys. Rev. B 74, 224305 (2006)

    Article  Google Scholar 

  14. Torrent, D., Sánchez-Dehesa, J.: Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008)

    Article  Google Scholar 

  15. Morse, P.M.C., Ingard, K.U.: Theoretical Acoustics. Princeton University Press, Princeton NJ (1986)

    Google Scholar 

  16. Torrent, D., Hkansson, A., Cervera, F., Sánchez-Dehesa, J.: Homogenization of two-dimensional clusters of rigid rods in air. Phys. Rev. Lett. 96, 204302 (2006)

    Article  Google Scholar 

  17. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1964)

    Google Scholar 

  18. Berryman, J.G.: Long-wavelength propagation in composite elastic media. I. Spherical inclusions. J. Acoust. Soc. Am. 68, 1809 (1980)

    Article  Google Scholar 

  19. Burov, B.A., Dmitriev, K.V., Sergeev, S.N.: Acoustic double-negative media. Acoust. Phys. 55, 298–310 (2009)

    Article  Google Scholar 

  20. Voitovich, N.N., Katsenelenbaum, B.Z., Nauka, A.N.: Generalized Method of Eigenoscillation in Diffraction Theory. Nauka, Moscow (1977). [in Russian]

    Google Scholar 

  21. Barkhatov, et al.: Acoustics in Problems, Nauka, Fizmatlit, Moscow (1996) [in Russian]

    Google Scholar 

  22. Burov, V.A., Vecherin, S.N., Rumyantseva, O.D.: Statistical estimation of the spatial spectrum of secondary sources. Akust. Zh. 50, 14 (2004)

    Google Scholar 

  23. Bliokh, Y.K., Bliokh, Y.P.: Usp. Fiz. Nauk 174, 439 (2004)

    Google Scholar 

  24. Burov, V.A., Dimitriev, K.V., Sergeev, S.N.: Wave effects in acoustic media with a negative refractive index. Izv. Ross. Akad. Nauk, Ser. Fiz. 72, 1695 (2008)

    Google Scholar 

  25. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon Siong Gan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gan, W.S. (2018). Basic Mechanisms of Sound Propagation in Solids for Negative Materials. In: New Acoustics Based on Metamaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6376-3_3

Download citation

Publish with us

Policies and ethics