Skip to main content

Grasping Force Control of Prosthetic Hand Based on PCA and SVM

  • Conference paper
  • First Online:
Advanced Computational Methods in Life System Modeling and Simulation (ICSEE 2017, LSMS 2017)

Abstract

This paper presents a control method of grasping force of prosthetic hand. Firstly, the correlated features of surface electromyogram (sEMG) signal that collected by MYO are calculated, and then principal component analysis (PCA) dimension reduction is processed. According to pattern classification model and sEMG-force regression model which based on support vector machine (SVM) to gain the force prediction value. In this approach, force is divided into different grades. The predicted force value is used as the given signal, and grasping force of prosthetic hand is controlled by a fuzzy controller, and combined with vibration feedback device to feedback grasping force value to patient’s arm. The test results show that the method of prosthetic hand grasping force control is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingke, Z., Xiaogang, D., Hua, D.: Force estimation in different grasping mode from electromyography. J. Comput. Appl. 35(7), 2109–2112 (2015)

    Google Scholar 

  2. Huatao, Z., Aiguo, S., Yan, G., Jiatong, B., Kui, Q.: Control method for myoelectric prosthetic hand’s grip force based on neural network and fuzzy logic controller. Adv. Mater. Res. 403–408, 2843–2847 (2011)

    Google Scholar 

  3. Fukuda, O., Tsuji, T., Kaneko, M., Otsuka, A.: A human-assisting manipulator teleoperated by sEMG signals and armmotions. IEEE Trans. Robot. Autom. 19(2), 210–222 (2003)

    Article  Google Scholar 

  4. Erdemir, A., Mclean, S.G., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces during movements. Clin. Biomech. 22(2), 131–154 (2007)

    Article  Google Scholar 

  5. Peidong, L., Chenguang, Y., Ning, W., Ruifeng, L.: A discrete-time algorithm for stiffness extraction from sEMG and its application in antidisturbance teleoperation. Discrete Dyn. Nat. Soc. 2016(2), 1–11 (2016)

    MathSciNet  Google Scholar 

  6. Zhijun, L., Baocheng, W., Fuchun, S., Chenguang, Y., Qing, X., Weidong, Z.: sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J. Biomed. Health Inf. 18(3), 1043–1050 (2014)

    Article  Google Scholar 

  7. Ng, G.Y.F., Zhang, A.Q., Li, C.K.: Biofeedback exercise improved the EMG activity ratio of the medial and lateral vasti muscles in subjects with patellofemoral pain syndrome. J. Electromyogr. Kinesiol. 18(1), 128–133 (2008)

    Article  Google Scholar 

  8. Li, G., Schultz, A.E., Kuiken, T.A.: Quantifying pattern recognition based myoelectric control of multifunctional transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 185–192 (2010)

    Article  Google Scholar 

  9. Kamavuako, E.N., Farina, D., Yoshida, K., Jensen, W.: Relationship between grasping force and features of single-channel intramuscular EMG signals. J. Neurosci. Methods 185(1), 143–150 (2009)

    Article  Google Scholar 

  10. Hanliang, Y., Chase, R.A., Mosby, B.S.: Atlas of hand anatomy and clinical implications. J. Hand Surg. Br. Eur. 29(4), 409 (2004)

    Article  Google Scholar 

  11. Choi, C., Kwon, S., Park, W., Lee, H., Kim, J.: Real-time pinch force estimation by surface electromyography using an artificial neural network. Med. Eng. Phys. 32(5), 429–436 (2010)

    Article  Google Scholar 

  12. Xinqing, W., Yiwei, L., Dapeng, Y., Shaowei, F., Hong, L.: Tracking control of real-time force for prosthetic hand based on EMG. J. Shenyang Univ. Technol. 34(1), 63–67 (2012)

    Google Scholar 

  13. Dapeng, Y., Jingdong, Z., Li, J., Hong, L.: Force regression from EMG signals under different grasping patterns. J. Harbin Inst. Technol. 44(1), 83–87 (2012)

    Google Scholar 

  14. Xinhua, D., Zengqiang, C., Zhuzhi, Y.: Function approximation research based on support vector machine. Comput. Eng. 32(8), 52–54 (2006)

    Google Scholar 

  15. David, G., Lloyd, T.F.B.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)

    Article  Google Scholar 

  16. Gaofeng, W., Feng, T., Gang, T., Chengtao, W.: A wavelet-based method to predict muscle forces from surface electromyography signals in weightlifting. J. Bionic Eng. 09(9), 48–58 (2012)

    Google Scholar 

  17. Asefi, M., Moghimi, S., Kalani, H., Moghimi, A.: Dynamic modeling of SEMG–force relation in the presence of muscle fatigue during isometric contractions. Biomed. Signal Process. Control 28, 41–49 (2016)

    Article  Google Scholar 

  18. Soo, Y., Sugi, M., Yokoi, H., Arai, T., Nishino, M., Kato, R., Nakamura, T., Ota, J.: Estimation of handgrip force using frequency-band technique during fatiguing muscle contraction. J. Electromyogr. Kinesiol. 20(5), 888–895 (2010)

    Article  Google Scholar 

  19. Englehart, K., Hudgins, B., Parker, P.A.: A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 48(3), 302–311 (2001)

    Article  Google Scholar 

  20. Kamavuako, E.N., Rosenvang, J.C., Bøg, M.F., Smidstrup, A., Erkocevic, E., Niemeier, M.J., Jensen, W., Farina, D.: Influence of the feature space on the estimation of hand grasping force from intramuscular EMG. Biomed. Signal Process. Control 8(1), 1–5 (2013)

    Article  Google Scholar 

  21. Dongmei, W., Xin, S., Zhicheng, Z., Zhijiang, D.: Feature collection and analysis of surface electromyography signals. J. Clin. Rehabil. Tissue Eng. Res. 14(43), 8073–8076 (2010)

    Google Scholar 

  22. Yutao, J., Zhizeng, L.: Summary of EMG feature extraction. Chin. J. Electron Devices 30(1), 326–330 (2007)

    Google Scholar 

  23. Yapeng, Z.: Research on face recognition system based on parallel pca algorithm. Comput. Knowl. Technol. 12(19), 147–148 (2016)

    Google Scholar 

  24. Yuan, Z., Yanping, Z.: An algorithm of PCA and its application. Comput. Technol. Dev. 15(2), 67–68 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ren, J. et al. (2017). Grasping Force Control of Prosthetic Hand Based on PCA and SVM. In: Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z. (eds) Advanced Computational Methods in Life System Modeling and Simulation. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 761. Springer, Singapore. https://doi.org/10.1007/978-981-10-6370-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6370-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6369-5

  • Online ISBN: 978-981-10-6370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics