Skip to main content

Current Solutions for the Heat-Sink Effect of Blood Vessels with Radiofrequency Ablation: A Review and Future Work

  • Conference paper
  • First Online:
Advanced Computational Methods in Life System Modeling and Simulation (ICSEE 2017, LSMS 2017)

Abstract

Radiofrequency ablation (RFA) as an alternative treatment to the conventional open surgery is the most popular minimally invasive thermal therapy, and it is widely used in clinic today. One of the most important limits for the RFA in clinic is the difficulty to deal with the heat-sink effect of blood vessels, as it causes the difficulty of control the RFA process and consequently the coagulation size of RFA is decreased considerably (empirically, the coagulation size is less than 3 cm with a single RFA electrode). This paper reviews the literature of the current solution for the heat-sink effect due to large blood vessels and suggests future work for finding more effective solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, M., Goldberg, S.N.: Principles of radiofrequency ablation. J. Interv. Oncol., 23–37 (2012). Springer

    Google Scholar 

  2. Ni, Y., et al.: A review of the general aspects of radiofrequency ablation. Abdom. Imaging 30, 381–400 (2005)

    Article  Google Scholar 

  3. Yang, W., et al.: Ten-year survival of hepatocellular carcinoma patients undergoing radiofrequency ablation as a first-line treatment. World J. Gastroenterol. 22, 2993 (2016)

    Article  Google Scholar 

  4. Zhang, B., et al.: A review of radiofrequency ablation: Large target tissue necrosis and mathematical modelling. Phys. Med. 32, 961–971 (2016)

    Article  Google Scholar 

  5. Lee, J.M., et al.: Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Invest. Radiol. 42, 163–171 (2007)

    Article  Google Scholar 

  6. Rhim, H., et al.: Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics 21, S17–S35 (2001)

    Article  Google Scholar 

  7. Huang, H.-W.: Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Med. Phys. 40, 073303 (2013)

    Article  Google Scholar 

  8. Goldberg, S., et al.: Radio-frequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology 209, 761–767 (1998)

    Article  Google Scholar 

  9. Poch, F.G., et al.: The vascular cooling effect in hepatic multipolar radiofrequency ablation leads to incomplete ablation ex vivo. Int. J. Hyperth., 1–8 (2016)

    Google Scholar 

  10. Dodd III, G.D., et al.: Effect of variation of portal venous blood flow on radiofrequency and microwave ablations in a blood-perfused bovine liver model. Radiology 267, 129–136 (2013)

    Article  Google Scholar 

  11. Zhang, B., et al.: Evaluation of the current radiofrequency ablation systems using axiomatic design theory. Proc. Inst. Mech. Eng. H 228, 397–408 (2014)

    Article  Google Scholar 

  12. Ahmed, M., et al.: Image-guided tumor ablation: Standardization of terminology and reporting criteria—a 10-year update. J. Vasc. Interv. Radiol. 25, 1691–1705, e1694 (2014)

    Google Scholar 

  13. Goldberg, S.N.: Radiofrequency tumor ablation: principles and techniques. Eur. J. Ultrasound 13, 129–147 (2001)

    Article  Google Scholar 

  14. Zhang, B., et al.: Study of the relationship between the target tissue necrosis volume and the target tissue size in liver tumours using two-compartment finite element RFA modelling. Int. J. Hyperth. 30, 593–602 (2014)

    Article  Google Scholar 

  15. Zhang, B., et al.: Numerical analysis of the relationship between the area of target tissue necrosis and the size of target tissue in liver tumours with pulsed radiofrequency ablation. Int. J. Hyperth. 31, 715–725 (2015)

    Article  Google Scholar 

  16. Zhang, B., et al.: A new approach to feedback control of radiofrequency ablation systems for large coagulation zones. Int. J. Hyperth. 33, 367–377 (2017)

    Article  Google Scholar 

  17. Hariharan, P., et al.: Radio-frequency ablation in a realistic reconstructed hepatic tissue. J. Biomech. Eng. 129, 354–364 (2007)

    Google Scholar 

  18. Consiglieri, L., et al.: Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies. Phys. Med. Biol. 48, 4125 (2003)

    Article  Google Scholar 

  19. Nakayama, A., Kuwahara, F.: A general bioheat transfer model based on the theory of porous media. Int. J. Heat Mass Transf. 51, 3190–3199 (2008)

    Article  MATH  Google Scholar 

  20. Haemmerich, D., et al.: Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med. Biol. Eng. Comput. 41, 317–323 (2003)

    Article  Google Scholar 

  21. Yu, J., et al.: A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Eur. J. Radiol. 79, 124–130 (2011)

    Article  Google Scholar 

  22. Lu, D.S., et al.: Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: Assessment of the “heat sink” effect. AJR Am. J. Roentgenol. 178, 47–51 (2002)

    Article  Google Scholar 

  23. Shih, T.-C., et al.: Cooling effect of thermally significant blood vessels in perfused tumor tissue during thermal therapy. Int. Commun. Heat Mass 33, 135–141 (2006)

    Article  Google Scholar 

  24. Pillai, K., et al.: Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine 94, e580 (2015)

    Article  Google Scholar 

  25. Lehmann, K.S., et al.: Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo. J. Hepatobiliary Pancreat. Sci. 23, 508–516 (2016)

    Article  Google Scholar 

  26. de Baere, T., et al.: Radiofrequency ablation of lung metastases close to large vessels during vascular occlusion: preliminary experience. J. Vasc. Interv. Radiol. 22, 749–754 (2011)

    Article  Google Scholar 

  27. Cha, J., et al.: Radiofrequency ablation using a new type of internally cooled electrode with an adjustable active tip: An experimental study in ex vivo bovine and in vivo porcine livers. Eur. J. Radiol. 77, 516–521 (2011)

    Article  Google Scholar 

  28. Ito, N., et al.: Bipolar radiofrequency ablation: development of a new expandable device. Cardiovasc. Intervent. Radiol. 37, 770–776 (2014)

    Article  Google Scholar 

  29. Yoon, J.H., et al.: Monopolar radiofrequency ablation using a dual-switching system and a separable clustered electrode: Evaluation of the in vivo efficiency. Korean J. Radiol. 15, 235–244 (2014)

    Article  Google Scholar 

  30. Lee, J., et al.: Radiofrequency ablation in pig lungs: in vivo comparison of internally cooled, perfusion and multitined expandable electrodes. Br. J. Radiol. (2014)

    Google Scholar 

  31. Goldberg, S.N., et al.: Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad. Radiol. 2, 399–404 (1995)

    Article  Google Scholar 

  32. Cha, J., et al.: Radiofrequency ablation zones in ex vivo bovine and in vivo porcine livers: Comparison of the use of internally cooled electrodes and internally cooled wet electrodes. Cardiovasc. Intervent. Radiol. 32, 1235–1240 (2009)

    Article  Google Scholar 

  33. Pereira, P.L., et al.: Radiofrequency ablation: In vivo comparison of four commercially available devices in pig livers. Radiology 232, 482–490 (2004)

    Article  Google Scholar 

  34. Hirakawa, M., et al.: Randomized controlled trial of a new procedure of radiofrequency ablation using an expandable needle for hepatocellular carcinoma. Hepatol. Res. 43, 846–852 (2013)

    Article  Google Scholar 

  35. Lee, E.S., et al.: Multiple-electrode radiofrequency ablations using Octopus® electrodes in an in vivo porcine liver model. Br. J. Radiol. 85, e609–e615 (2014)

    Article  Google Scholar 

  36. Rossi, S., et al.: Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am. J. Roentgenol. 170, 1015–1022 (1998)

    Article  Google Scholar 

  37. Choi, D., et al.: Percutaneous radiofrequency ablation for recurrent hepatocellular carcinoma after hepatectomy: long-term results and prognostic factors. Ann. Surg. Oncol. 14, 2319–2329 (2007)

    Article  Google Scholar 

  38. Lau, L., Han, Y.-L.: Exploring a novel heating probe design for tumor ablation. J. Med. Device 10, 030930 (2016)

    Article  Google Scholar 

  39. Huo, Y.R., et al.: “Edgeboost”: a novel technique to extend the ablation zone lateral to a two-probe bipolar radiofrequency device. Cardiovasc. Intervent. Radiol. 39, 97–105 (2016)

    Article  Google Scholar 

  40. Šubrt, Z., et al.: Temporary liver blood-outflow occlusion increases effectiveness of radiofrequency ablation: an experimental study on pigs. Eur. J. Surg. Oncol. 34, 346–352 (2008)

    Article  Google Scholar 

  41. Sobczyński, R., et al.: Transoesophageal echocardiography reduces invasiveness of cavoatrial tumour thrombectomy. Wideochir Inne Tech Maloinwazyjne 9, 479 (2014)

    Google Scholar 

  42. de Baere, T., et al.: Hepatic malignancies: percutaneous radiofrequency ablation during percutaneous portal or hepatic vein occlusion 1. Radiology 248, 1056–1066 (2008)

    Article  Google Scholar 

  43. Rossi, S., et al.: Percutaneous radio-frequency thermal ablation of nonresectable hepatocellular carcinoma after occlusion of tumor blood supply. Radiology 217, 119–126 (2000)

    Article  Google Scholar 

  44. Ahmed, M., et al.: Principles of and advances in percutaneous ablation. Radiology 258, 351–369 (2011)

    Article  Google Scholar 

  45. Yamada, R., et al.: Hepatic artery embolization in 120 patients with unresectable hepatoma. Radiology 148, 397–401 (1983)

    Article  Google Scholar 

  46. Goldberg, S.N., et al.: Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J. Vasc. Interv. Radiol. 9, 101–111 (1998)

    Article  Google Scholar 

  47. Rossmann, C., et al.: Platform for patient-specific finite-element modeling and application for radiofrequency ablation. Visual Image Proc. Comput. Biomed. 1 (2012)

    Google Scholar 

  48. Huang, H.-W., et al.: A robust power deposition scheme for tumors with large counter-current blood vessels during hyperthermia treatment. Appl. Therm. Eng. 89, 897–907 (2015)

    Article  Google Scholar 

  49. Audigier, C., et al.: Challenges to validate multi-physics model of liver tumor radiofrequency ablation from pre-clinical data. Comput. Biomech. Med., 29–40 (2015)

    Google Scholar 

  50. O’Rourke, A.P., et al.: Current status of liver tumor ablation devices. Expert Rev. Med. Devices 4, 523–537 (2007)

    Article  Google Scholar 

  51. Lim, D., et al.: Effect of input waveform pattern and large blood vessel existence on destruction of liver tumor using radiofrequency ablation: Finite element analysis. J. Biomech. Eng. 132, 061003 (2010)

    Article  Google Scholar 

  52. Wang, Z., et al.: Bi-component conformal electrode for radiofrequency sequential ablation and circumferential separation of large tumours in solid organs: development and in-vitro evaluation. IEEE Trans. Biomed. Eng. 64, 699–705 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Zhang or Wenjun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Fang, Z., Zhang, B., Zhang, W. (2017). Current Solutions for the Heat-Sink Effect of Blood Vessels with Radiofrequency Ablation: A Review and Future Work. In: Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z. (eds) Advanced Computational Methods in Life System Modeling and Simulation. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 761. Springer, Singapore. https://doi.org/10.1007/978-981-10-6370-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6370-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6369-5

  • Online ISBN: 978-981-10-6370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics