Skip to main content

Periodic Intensification Principles and Methods of High-solid and Multi-phase Bioprocess

  • Chapter
  • First Online:
  • 518 Accesses

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

High-solid and multi-phase bioprocess is an interactive process among microorganism and environmental factors. Various environmental stimulations will affect microbial growth and metabolism in high-solid and multi-phase bioprocess. In this chapter, periodic intensification principle is proposed based on microbial physiology and biochemistry properties. Novel periodic intensification methods such as periodic peristalsis and gas double dynamic (GDD) were used in high-solid and multi-phase bioprocess to improve microbial performance, and mechanisms of the two intensification methods are systematically analyzed. Based on the analysis, it is concluded that periodic peristalsis and gas double dynamic can effectively intensify microbial growth and target products formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liang JX, Weng SH, Chen JH (2006) Chaos theory and modernlization of chinese medical. J Guangzhou Univ Tradit Chin Med 23(3):186–189

    CAS  Google Scholar 

  2. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208):239

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ, Taylor C (1988) Inositol trisphosphate and calcium signaling. In: Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 927–933

    Article  CAS  PubMed  Google Scholar 

  4. Thomas A, Bird G, Hajnoczky G, Robb-Gaspers L, Putney J (1996) Spatial and temporal aspects of cellular calcium signaling. FASEB J 10(13):1505–1517

    Article  CAS  PubMed  Google Scholar 

  5. Chance B, Hess B, Betz A (1964) DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem Biophy Res Co 16 (2):182–187

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Hou Z, Xin H (2005) Internal noise stochastic resonance for intracellular calcium oscillations in a cell system. Phys Rev E 71(6):061916

    Article  CAS  Google Scholar 

  7. Wang J, Liu ZH, Cai RX et al (2006) Current development of analytical methods based on biological spatiotemporal oscillators. Process Chem 18 (1)

    Google Scholar 

  8. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems, vol 191977. Wiley, New York

    Google Scholar 

  9. Li RS (1986) None-equilibrium thermodynamics and dissipative structure. Tsinghua University Press

    Google Scholar 

  10. Sun KL, Cai GY (1999) The effect of alternative stress on the thermodynamical properties of cultured tobaccco cells. Acta Biochemica et Biophysica 15(3):578–583

    Google Scholar 

  11. Ingber DE, Folkman J (1989) Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechanism. In: Cell shape: determinants, regulation, and regulatory role, pp 3–31

    Chapter  Google Scholar 

  12. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59(1):575–599

    Article  CAS  PubMed  Google Scholar 

  13. Li ZH (1993) A new principle of bioreactor design. In: Proceedings of the 5th National Conference on Biochemistry

    Google Scholar 

  14. Singer S, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. In: Day SB, Good RA (eds) Membranes and viruses in immunopathology, pp 7–47

    Chapter  Google Scholar 

  15. Yin JZ, Chen SJ, Jia LY et al (2009) Research on scale up factors and methods. Chem Equip Technol 30(1):22–27

    CAS  Google Scholar 

  16. Wang ZH (1982) History of microbial industry in China. Chin J Sci Techn Hist 4:98–98

    Google Scholar 

  17. Chen HZ, Li ZH (1998) Bioreactor engineering advances. Biotechnology 18(4):46–49

    Google Scholar 

  18. Li HQ (2008) Study on cellulase solid-state fermentation with gas periodic stimulation

    Google Scholar 

  19. Chen PS ( 1979) History of microbial industry in China. Light Industry Press

    Google Scholar 

  20. Dai CY, Wang BC (2003) Development of high-speed rectangle burner used in baked aluminum reduction cells. J Chongqing Univ (Nat Sci) 26 (2):15–17

    Google Scholar 

  21. Gao DW, Gao WH (1999) effect of linear ultrasonic wave irradiation on the growth of SaccharomYCES cerevisiae. J South China Univ Technol (Nat Sci ) 27(12):34–37

    Google Scholar 

  22. Fu XG, Chen HZ, Li HQ et al (2006) Study of microorganism protein and mechanism in solid state fermentation with periodical dynamic changes of air. J Bejing Univ Chem Technol (Nat Sci)

    Google Scholar 

  23. Wang JY, Zhu SG, Xu CF (2002) Biochemistry. Higher Education Press, Beijing

    Google Scholar 

  24. Li WQ, Chen HJ, Chen CH et al (2007) The influence of Key enzyme in glucose metabolism on lincomycin biosyhthesis. Pharm Biotechnol 14(6):424–428

    CAS  Google Scholar 

  25. Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32(2):77–86

    Article  CAS  PubMed  Google Scholar 

  26. Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  CAS  PubMed  Google Scholar 

  27. Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochemica et Biophysica Acta (BBA)-Rev Biomembr 947 (1):1–28

    Article  CAS  Google Scholar 

  28. Portillo F (2000) Regulation of plasma membrane H + -ATPase in fungi and plants. Biochimica et Biophysica Acta (BBA) Rev Biomembr 1469 (1):31–42

    Article  CAS  Google Scholar 

  29. Piper P, Talreja K, Panaretou B et al (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140(11):3031–3038

    Article  CAS  PubMed  Google Scholar 

  30. Du CY, Liu M, Rao Z et al (2005) Effect of alternative aeration on key enzymes and coenzyme in 1,3-propanediol prodction by Klebsiella pneumoniae. Chin J Process Eng 5(5):540–544

    CAS  Google Scholar 

  31. Xie MD, Liu DH, Zhang Y et al (2000) Enhancement of fermentative gltcerol yield with heat shock treatment. Chin J Biotechnol 16(3):384–386

    Google Scholar 

  32. Saucedo-Castañeda G, Trejo-Hernández M, Lonsane B et al (1994) On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem 29(1):13–24

    Article  Google Scholar 

  33. Peng XW (2008) Production of single cell oils from steam-exploded straw in solid-stated fermentation and pyrolysis of fermented mass for producing biodiesel. university of chinese academy of sciences. Institute of Process Engineering, Chinese Academy of Sciences

    Google Scholar 

  34. Zeng W (2008) Solid state fermentation of feruloyl esterase and synergistic effect with cellulase. Institute of Process Engineering, Chinese Academy of Sciences

    Google Scholar 

  35. Chen J, Liu LM, Du GC (2009) Optimazation principle and technology of fermentation process. Chemical Industry Press, Beijing

    Google Scholar 

  36. Jia B, Jin ZH, Mei LH (2008) Influence of glucose feeding on pristinamycins fermentation process of Streptomyces pristinaespiralis. Chin J Antibiot 33(2):75–79

    CAS  Google Scholar 

  37. Zhao LG, Wang P, Ni H et al (2008) β-glucosidase production by Aspergillus niger with fed-batch fermentation. Ind Microb 38(6):13–16

    CAS  Google Scholar 

  38. Xie MY, Bie ZX (2007) Fermentation technologies. Chemical Industry Press, Beijing

    Google Scholar 

  39. Ming Y (1998) Optimization control of fermentation engineering. Jiangsu Science and Technology Press

    Google Scholar 

  40. Shi TH, Liu XL, Liu H et al (2005) Effect factors and control of microbial fermentation. Poult Sci 2:45–48

    CAS  Google Scholar 

  41. Tao YG, Tang B, Huang W, Xu XL (2003) The environmental conditions of producing Bacilus thr.ingiensis in the pressure pulse bioreactor. J Huazhong Agric Univ 22 (5):466–468

    Google Scholar 

  42. Tao YG, Xiang SG, Zhou DC (2003) Study on solid-state fermentation conditions of producing acid proteinase feed in pressure pulsation. Cereal Feed Ind 3:23–24

    Google Scholar 

  43. Chen HZ, Qiu WH (2007) The crucial problems and recent advance on producing fel alcohol by fermentation of straw. Process Chem 19(7):1116–1121

    CAS  Google Scholar 

  44. Xu FJ, Chen HZ, Li ZH (2002) Gas double dynamic solid state fermentation of cellase. Environ Sci 23(3):53–58

    CAS  Google Scholar 

  45. Xu FJ, Chen HZ, Shao MJ et al (2002) Scanning electron microscopic observation on solid-state Fermentation of Cellulase. J Chin Electron Microsc Soc 21(1):25–29

    CAS  Google Scholar 

  46. Li ZH, Chen HZ (2001) Key technology of ecological Industry for straw. Trans CSAE 17(2):1–4

    Google Scholar 

  47. Xu FJ, Chen HZ, Li ZH (2002) Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb Tech 30(1):45–48

    Article  CAS  Google Scholar 

  48. Xu XL (2003) Studies on the technology for industrial production of beauveria. J Zhejiang Univ Technol 31(5):520–523

    Google Scholar 

  49. Zhang X, Qiu WH, Chen HZ (2012) Enhancing the hydrolysis and acidification of steam-exploded cornstalks by intermittent pH adjustment with an enriched microbial community. Biores Technol 123:30–35

    Article  CAS  Google Scholar 

  50. Lv XF, Y HL, Wang W (2001) The application of ultrasonic in fermentation engineering. Lett Biotechnol 12 (4):310–313

    Google Scholar 

  51. Lin Y (1997) Effect of magnetic field on the cells growth and inulinase biosynthesis of Kluyveromyces fragili. South China Univ Technol

    Google Scholar 

  52. Li GJ, He X, Gao DW (2000) Study of forced ripening fermented bean curd with high frequence electric field. China Brewing 19(6):13–14

    Google Scholar 

  53. Doremus MG, Linden JC, Moreira AR (1985) Agitation and pressure effects on acetone-butanol fermentation. Biotech Bioeng 27(6):852–860

    Article  CAS  Google Scholar 

  54. Lamed R, Lobos J, Su T (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microb 54(5):1216–1221

    CAS  Google Scholar 

  55. Qureshi N, Singh V, Liu S et al (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228

    Article  CAS  PubMed  Google Scholar 

  56. Han PP, Yuan YJ (2009) Metabolic profiling as a tool for understanding defense response of Taxus cuspidata cells to shear stress. Biotechnol Progr 25(5):1244–1253

    Article  CAS  Google Scholar 

  57. Xia ML, Wang L, Yang ZX et al (2015) Periodic-peristole agitation for process enhancement of butanol fermentation. Biotechnol Biofuels 8(1):1

    Article  CAS  Google Scholar 

  58. Lee J, Yun H, Feist AM et al (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microb and Biotechnol 80(5):849–862

    Article  CAS  Google Scholar 

  59. Janssen H, Grimmler C, Ehrenreich A et al (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—solvent stress caused by a transient n-butanol pulse. J Biotechnol 161(3):354–365

    Article  CAS  PubMed  Google Scholar 

  60. Castro J, Razmilic V, Gerdtzen Z (2013) Genome based metabolic flux analysis of Ethanoligenens harbinense for enhanced hydrogen production. Int J Hydrogen Energy 38(3):1297–1306

    Article  CAS  Google Scholar 

  61. Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. App Microbiol Biotechnol 85(6):1697–1712

    Article  CAS  Google Scholar 

  62. Lee JY, Jang YS, Lee J et al (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4(10):1432–1440

    Article  CAS  PubMed  Google Scholar 

  63. Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene‐expression‐based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105 (6):1131–1147

    Google Scholar 

  64. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotech 22(5):634–647

    Article  CAS  PubMed  Google Scholar 

  65. Cai G, Jin B, Saint C et al (2010) Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: effect of pH and glucose concentrations. Int J Hydrogen Energy 35(13):6681–6690

    Article  CAS  Google Scholar 

  66. Amador-Noguez D, Feng XJ, Fan J et al (2010) Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum. J Bacteriol 192(17):4452–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Korneli C, Bolten CJ, Godard T et al (2012) Debottlenecking recombinant protein production in Bacillus megatherium under large-scale conditions—targeted precursor feeding designed from metabolomics. Biotechnol Bioeng 109(6):1538–1550

    Article  CAS  PubMed  Google Scholar 

  68. Jones SW, Paredes CJ, Tracy B et al (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9(7):1

    Article  CAS  Google Scholar 

  69. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187(20):7103–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han PP, Yuan YJ (2009) Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. FASEB J 23(2):623–630

    Article  CAS  PubMed  Google Scholar 

  71. Chapman AG, Fall L, Atkinson DE (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108(3):1072–1086

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Ball W, Atkinson DE (1975) Adenylate energy charge in Saccharomyces cerevisiae during starvation. J Bacteriol 121(3):975–982

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhao S, Huang D, Qi H et al (2013) Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus. App Microbiol Biotechnol 97(12):5329–5341

    Article  CAS  Google Scholar 

  74. Bhagyalakshmi A, Berthiaume F, Reich K et al (1992) Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J Vasc Res 29(6):443–449

    Article  CAS  PubMed  Google Scholar 

  75. Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M et al (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microb 69(5):2831–2841

    Article  CAS  Google Scholar 

  76. Chen HZ, Li ZH (2001) Microbial solid fermentation reactor. Chem Technol Mark 24(2):25–27

    CAS  Google Scholar 

  77. Zhao ZM, Wang L, Chen HZ (2015) Variable pressure pulsation frequency optimization in gas double-dynamic solid-state fermentation (GDSSF) based on heat balance model. Process Biochem 50(2):157–164

    Article  CAS  Google Scholar 

  78. Chen HZ, Zhao ZM, Li HQ (2014) The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme Microb Technol 58–59(9):14–21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H. (2018). Periodic Intensification Principles and Methods of High-solid and Multi-phase Bioprocess. In: High-solid and Multi-phase Bioprocess Engineering. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6352-7_5

Download citation

Publish with us

Policies and ethics