Skip to main content

The Argon Bubble Rising in the Liquid GaInSn Under the Influence of a Vertical Magnetic Field

  • 320 Accesses

Part of the Springer Theses book series (Springer Theses)

Abstract

As introduced in Chap. 1, the bubbly driven flows are encountered frequently in the metallurgical engineering and the casting engineering, where the bubbles are injected into the molten metal to stir and homogenize the liquid metal (Bai and Thomas, Metall Mater Trans B 32(6):1143–1159, 2001, [1]). For such type of two-phase flows, the MFs are used to control the bubble motion through a contactless way. In addition, in the fusion reactor, the MHD effect will greatly suppress the turbulence of the flow in the energy transfer section, and a possible remedy is to inject gas bubbles into the coolant to enhance the flow disturbances. From this perspective, the bubble behaviors in the fluids subjected to the external MF has became a topic of considerable interest.

Keywords

  • Bubble Rise
  • Bubble Motion
  • Rise Path
  • Bubble Centroid
  • Terminal Rising Velocities

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-6340-4_5
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-6340-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22

References

  1. Bai H, Thomas BG (2001) Bubble formation during horizontal gas injection into downward-flowing liquid. Metall Mater Trans B 32(6):1143–1159

    CrossRef  Google Scholar 

  2. Benjamin TB (1987) Hamiltonian theory for motions of bubbles in an infinite liquid. J Fluid Mech 181:349–379

    MathSciNet  CrossRef  Google Scholar 

  3. Brücker C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11(7):1781–1796

    MathSciNet  CrossRef  Google Scholar 

  4. Cano-Lozano JC, Bohorquez P, Martnez-Bazn C (2013) Wake instability of a fixed axisymmetric bubble of realistic shape. Int J Multiph Flow 51:11–21

    CrossRef  Google Scholar 

  5. Davidson PA (1995) Magnetic damping of jets and vortices. J Fluid Mech 299:153–186

    CrossRef  Google Scholar 

  6. De Vries AWG, Biesheuvel A, Van Wijngaarden L (2002) Notes on the path and wake of a gas bubble rising in pure water. Int J Multiph Flow 28(11):1823–1835

    CrossRef  Google Scholar 

  7. Ellingsen K, Risso F (2001) On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J Fluid Mech 440:235–268

    CrossRef  Google Scholar 

  8. Gaudlitz D, Adams NA (2009) Numerical investigation of rising bubble wake and shape variations. Phys Fluids 21(12):122102

    CrossRef  Google Scholar 

  9. Gaudlitz D, Adams NA (2010) The influence of magnetic fields on the rise of gas bubbles in electrically conductive liquids. Direct and large-eddy simulation VII, pp 465–471

    CrossRef  Google Scholar 

  10. Hartunian RA, Sears WR (1957) On the instability of small gas bubbles moving uniformly in various liquids. J Fluid Mech 3(1):27–47

    CrossRef  Google Scholar 

  11. Lunde K, Perkins RJ (1997) Observations on wakes behind spheroidal bubbles and particles. In: ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada, p 141

    Google Scholar 

  12. Magnaudet J, Eames I (2000) The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech 32(1):659–708

    MathSciNet  CrossRef  Google Scholar 

  13. Mendelson HD (1967) The prediction of bubble terminal velocities from wave theory. AIChE J 13(2):250–253

    CrossRef  Google Scholar 

  14. Miao X, Lucas D, Ren Z et al (2013) Numerical modeling of bubble-driven liquid metal flows with external static magnetic field. Int J Multiph Flow 48:32–45

    CrossRef  Google Scholar 

  15. Mori Y, Hijikata K, Kuriyama I (1977) Experimental study of bubble motion in mercury with and without a magnetic field. J Heat Transf 99(3):404–410

    CrossRef  Google Scholar 

  16. Mougin G, Magnaudet J (2001) Path instability of a rising bubble. Phys Rev Lett 88(1):014502

    CrossRef  Google Scholar 

  17. Ni MJ, Munipalli R, Morley NB et al (2007) A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system. J Comput Phys 227(1):174–204

    MathSciNet  CrossRef  Google Scholar 

  18. Ni MJ, Munipalli R, Huang P et al (2007) A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J Comput Phys 227(1):205–228

    MathSciNet  CrossRef  Google Scholar 

  19. Saffman PG (1956) On the rise of small air bubbles in water. J Fluid Mech 1(3):249–275

    MathSciNet  CrossRef  Google Scholar 

  20. Shew WL, Pinton JF (2006) Dynamical model of bubble path instability. Phys Rev Lett 97(14):144508

    CrossRef  Google Scholar 

  21. Shibasaki Y, Ueno K, Tagawa T (2010) Computation of a rising bubble in an enclosure filled with liquid metal under vertical magnetic fields. ISIJ Int 50(3):363–370

    CrossRef  Google Scholar 

  22. Takatani K (2007) Mathematical modeling of incompressible MHD flows with free surface. ISIJ Int 47(4):545–551

    CrossRef  Google Scholar 

  23. Veldhuis C, Biesheuvel A, Van Wijngaarden L (2008) Shape oscillations on bubbles rising in clean and in tap water. Phys Fluids 20(4):040705

    CrossRef  Google Scholar 

  24. Wu M, Gharib M (2002) Experimental studies on the shape and path of small air bubbles rising in clean water. Phys Fluids 14(7):L49–L52

    CrossRef  Google Scholar 

  25. Zhang C, Eckert S, Gerbeth G (2005) Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. Int J Multiph Flow 31(7):824–842

    CrossRef  Google Scholar 

  26. Zenit R, Magnaudet J (2008) Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys Fluids 20(6):061702

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J. (2019). The Argon Bubble Rising in the Liquid GaInSn Under the Influence of a Vertical Magnetic Field. In: The Developments and the Applications of the Numerical Algorithms in Simulating the Incompressible Magnetohydrodynamics with Complex Boundaries and Free Surfaces. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6340-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6340-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6339-8

  • Online ISBN: 978-981-10-6340-4

  • eBook Packages: EngineeringEngineering (R0)