The Validations of the Numerical Methodology

Part of the Springer Theses book series (Springer Theses)


In this chapter, detailed validations are presented to investigate the accuracy and the efficiency of the Gerris-MHD solver in simulating the MHD flows, respectively with complex solid boundaries or free surfaces.


Complex Solid Boundaries Hartmann Walls Terminal Rise Velocity Bubble Rise Thermocapillary Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almgren AS, Bell JB, Colella P et al (1998) A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J Comput Phys 142(1):1–46MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bhaga D, Weber ME (1981) Bubbles in viscous liquids: shapes, wakes and velocities. J Fluid Mech 105:61–85CrossRefGoogle Scholar
  3. 3.
    Chang CC, Lundgren TS (1961) Duct flow in magnetohydrodynamics. Zeitschrift fr Angewandte Mathematik und Physik (ZAMP) 12(2):100–114MathSciNetCrossRefGoogle Scholar
  4. 4.
    Davidson PA (1995) Magnetic damping of jets and vortices. J Fluid Mech 299:153–186CrossRefGoogle Scholar
  5. 5.
    Grigoriadis DGE, Kassinos SC, Votyakov EV (2009) Immersed boundary method for the MHD flows of liquid metals. J Comput Phys 228(3):903–920MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21(4):577–590MathSciNetCrossRefGoogle Scholar
  7. 7.
    Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Upper Saddle RiverGoogle Scholar
  8. 8.
    Ma C, Bothe D (2011) Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Int J Multiph Flow 37(9):1045–1058CrossRefGoogle Scholar
  9. 9.
    Mendelson HD (1967) The prediction of bubble terminal velocities from wave theory. AIChE J 13(2):250–253CrossRefGoogle Scholar
  10. 10.
    Minion ML (1996) A projection method for locally refined grids. J Comput Phys 127(1):158–178MathSciNetCrossRefGoogle Scholar
  11. 11.
    Miao X, Lucas D, Ren Z et al (2013) Numerical modeling of bubble-driven liquid metal flows with external static magnetic field. Int J Multiph Flow 48:32–45CrossRefGoogle Scholar
  12. 12.
    Mori Y, Hijikata K, Kuriyama I (1977) Experimental study of bubble motion in mercury with and without a magnetic field. J Heat Transf 99(3):404–410CrossRefGoogle Scholar
  13. 13.
    Mück B, Gnther C, Müller U et al (2000) Three-dimensional MHD flows in rectangular ducts with internal obstacles. J Fluid Mech 418:265–295MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mutschke G, Gerbeth G, Shatrov V et al (2001) The scenario of three-dimensional instabilities of the cylinder wake in an external magnetic field: a linear stability analysis. Phys Fluids 13(3):723–734CrossRefGoogle Scholar
  15. 15.
    Nas S, Tryggvason G (2003) Thermocapillary interaction of two bubbles or drops. Int J Multiph Flow 29(7):1117–1135CrossRefGoogle Scholar
  16. 16.
    Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190(2):572–600MathSciNetCrossRefGoogle Scholar
  17. 17.
    Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228(16):5838–5866MathSciNetCrossRefGoogle Scholar
  18. 18.
    Samad SKA (1981) The flow of conducting fluids through circular pipes having finite conductivity and finite thickness under uniform transverse magnetic fields. Int J Eng Sci 19(9):1221–1232CrossRefGoogle Scholar
  19. 19.
    Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Math Proc Camb Philos Soc 49(1):136–144 (Cambridge University Press)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shercliff JA (1956) The flow of conducting fluids in circular pipes under transverse magnetic fields. J Fluid Mech 1(6):644–666MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shercilff JA (1962) Magnetohydrodynamic pipe flow. Part 2:513Google Scholar
  22. 22.
    Tao Z, Ni MJ (2015) Analytical solutions for MHD flow at a rectangular duct with unsymmetrical walls of arbitrary conductivity. Sci China Phys Mech Astron 58(2):1–18CrossRefGoogle Scholar
  23. 23.
    Verlarde MG (2012) Physicochemical hydrodynamics: interfacial phenomena. Springer Science and Business Media, BerlinGoogle Scholar
  24. 24.
    Williamson CHK (1996) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28(1):477–539MathSciNetCrossRefGoogle Scholar
  25. 25.
    Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(3):350–356CrossRefGoogle Scholar
  26. 26.
    Zenit R, Magnaudet J (2008) Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys Fluids 20(6):061702CrossRefGoogle Scholar
  27. 27.
    Zhang C, Eckert S, Gerbeth G (2006) Determination of the flow structure in bubble-driven liquid metal flows using ultrasound Doppler method. In: 5th international symposium on ultrasonic Doppler methods for fluid mechanics and fluid engineering, Zrich, SwitzerlandGoogle Scholar
  28. 28.
    Zhang C, Eckert S, Gerbeth G (2007) The flow structure of a bubble-driven liquid-metal jet in a horizontal magnetic field. J Fluid Mech 575:57–82CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Chinese Academy of SciencesBeijingChina

Personalised recommendations