Skip to main content

The Validations of the Numerical Methodology

  • Chapter
  • First Online:
  • 372 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, detailed validations are presented to investigate the accuracy and the efficiency of the Gerris-MHD solver in simulating the MHD flows, respectively with complex solid boundaries or free surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almgren AS, Bell JB, Colella P et al (1998) A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J Comput Phys 142(1):1–46

    Article  MathSciNet  Google Scholar 

  2. Bhaga D, Weber ME (1981) Bubbles in viscous liquids: shapes, wakes and velocities. J Fluid Mech 105:61–85

    Article  Google Scholar 

  3. Chang CC, Lundgren TS (1961) Duct flow in magnetohydrodynamics. Zeitschrift fr Angewandte Mathematik und Physik (ZAMP) 12(2):100–114

    Article  MathSciNet  Google Scholar 

  4. Davidson PA (1995) Magnetic damping of jets and vortices. J Fluid Mech 299:153–186

    Article  Google Scholar 

  5. Grigoriadis DGE, Kassinos SC, Votyakov EV (2009) Immersed boundary method for the MHD flows of liquid metals. J Comput Phys 228(3):903–920

    Article  MathSciNet  Google Scholar 

  6. Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21(4):577–590

    Article  MathSciNet  Google Scholar 

  7. Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Upper Saddle River

    Google Scholar 

  8. Ma C, Bothe D (2011) Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Int J Multiph Flow 37(9):1045–1058

    Article  Google Scholar 

  9. Mendelson HD (1967) The prediction of bubble terminal velocities from wave theory. AIChE J 13(2):250–253

    Article  Google Scholar 

  10. Minion ML (1996) A projection method for locally refined grids. J Comput Phys 127(1):158–178

    Article  MathSciNet  Google Scholar 

  11. Miao X, Lucas D, Ren Z et al (2013) Numerical modeling of bubble-driven liquid metal flows with external static magnetic field. Int J Multiph Flow 48:32–45

    Article  Google Scholar 

  12. Mori Y, Hijikata K, Kuriyama I (1977) Experimental study of bubble motion in mercury with and without a magnetic field. J Heat Transf 99(3):404–410

    Article  Google Scholar 

  13. Mück B, Gnther C, Müller U et al (2000) Three-dimensional MHD flows in rectangular ducts with internal obstacles. J Fluid Mech 418:265–295

    Article  MathSciNet  Google Scholar 

  14. Mutschke G, Gerbeth G, Shatrov V et al (2001) The scenario of three-dimensional instabilities of the cylinder wake in an external magnetic field: a linear stability analysis. Phys Fluids 13(3):723–734

    Article  Google Scholar 

  15. Nas S, Tryggvason G (2003) Thermocapillary interaction of two bubbles or drops. Int J Multiph Flow 29(7):1117–1135

    Article  Google Scholar 

  16. Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190(2):572–600

    Article  MathSciNet  Google Scholar 

  17. Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228(16):5838–5866

    Article  MathSciNet  Google Scholar 

  18. Samad SKA (1981) The flow of conducting fluids through circular pipes having finite conductivity and finite thickness under uniform transverse magnetic fields. Int J Eng Sci 19(9):1221–1232

    Article  Google Scholar 

  19. Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Math Proc Camb Philos Soc 49(1):136–144 (Cambridge University Press)

    Article  MathSciNet  Google Scholar 

  20. Shercliff JA (1956) The flow of conducting fluids in circular pipes under transverse magnetic fields. J Fluid Mech 1(6):644–666

    Article  MathSciNet  Google Scholar 

  21. Shercilff JA (1962) Magnetohydrodynamic pipe flow. Part 2:513

    Google Scholar 

  22. Tao Z, Ni MJ (2015) Analytical solutions for MHD flow at a rectangular duct with unsymmetrical walls of arbitrary conductivity. Sci China Phys Mech Astron 58(2):1–18

    Article  Google Scholar 

  23. Verlarde MG (2012) Physicochemical hydrodynamics: interfacial phenomena. Springer Science and Business Media, Berlin

    Google Scholar 

  24. Williamson CHK (1996) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28(1):477–539

    Article  MathSciNet  Google Scholar 

  25. Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(3):350–356

    Article  Google Scholar 

  26. Zenit R, Magnaudet J (2008) Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys Fluids 20(6):061702

    Article  Google Scholar 

  27. Zhang C, Eckert S, Gerbeth G (2006) Determination of the flow structure in bubble-driven liquid metal flows using ultrasound Doppler method. In: 5th international symposium on ultrasonic Doppler methods for fluid mechanics and fluid engineering, Zrich, Switzerland

    Google Scholar 

  28. Zhang C, Eckert S, Gerbeth G (2007) The flow structure of a bubble-driven liquid-metal jet in a horizontal magnetic field. J Fluid Mech 575:57–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J. (2019). The Validations of the Numerical Methodology. In: The Developments and the Applications of the Numerical Algorithms in Simulating the Incompressible Magnetohydrodynamics with Complex Boundaries and Free Surfaces. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6340-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6340-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6339-8

  • Online ISBN: 978-981-10-6340-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics