In Gerris, an approximate projection method making use of a staggered-in-time discretization is employed to discretize the governing equations, and the numerical schemes are second-order accurate.


Approximate Projection Method Marangoni Force Cell Faces Variable Coefficient Poisson Equation Point Interpolation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bell JB, Colella P, Glaz HM (1989) A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys 85(2):257–283MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cummins SJ, Francois MM, Kothe DB (2005) Estimating curvature from volume fractions. Comput Struct 83(6):425–434CrossRefGoogle Scholar
  4. 4.
    Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  5. 5.
    Fadlun EA, Verzicco R, Orlandi P et al (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Francois MM, Cummins SJ, Dendy ED et al (2006) A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J Comput Phys 213(1):141–173zbMATHCrossRefGoogle Scholar
  7. 7.
    Fryxell B, Olson K, Ricker P et al (2000) FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J Suppl Ser 131(1):273CrossRefGoogle Scholar
  8. 8.
    Grigoriadis DGE, Kassinos SC, Votyakov EV (2009) Immersed boundary method for the MHD flows of liquid metals. J Comput Phys 228(3):903–920MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21(4):577–590MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ji H, Lien FS, Yee E (2006) An efficient second-order accurate cut-cell method for solving the variable coefficient Poisson equation with jump conditions on irregular domains. Int J Numer Methods Fluids 52(7):723–748zbMATHCrossRefGoogle Scholar
  11. 11.
    Johansen H, Colella P (1998) A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J Comput Phys 147(1):60–85MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Leboucher L (1999) Monotone scheme and boundary conditions for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number. J Comput Phys 150(1):181–198MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Leveque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31(4):1019–1044MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Liu XD, Fedkiw RP, Kang M (2000) A boundary condition capturing method for Poisson’s equation on irregular domains. J Comput Phys 160(1):151–178MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ni MJ (2009) Consistent projection methods for variable density incompressible Navier-Stokes equations with continuous surface forces on a rectangular collocated mesh. J Comput Phys 228(18):6938–6956MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ni MJ, Munipalli R, Morley NB et al (2007) A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system. J Comput Phys 227(1):174–204MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ni MJ, Munipalli R, Huang P et al (2007) A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J Comput Phys 227(1):205–228MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190(2):572–600MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228(16):5838–5866MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141(2):112–152MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31(1):567–603MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sterl A (1990) Numerical simulation of liquid-metal MHD flows in rectangular ducts. J Fluid Mech 216:161–191zbMATHCrossRefGoogle Scholar
  23. 23.
    Ye T, Mittal R, Udaykumar HS et al (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. Academic Press, New York, Numerical Methods for Fluid DynamicszbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Chinese Academy of SciencesBeijingChina

Personalised recommendations