Throughout the present thesis, magnetohydrodynamics (MHD, hereafter) deal with flows of liquid metal which is subjected to the external magnetic fields (MFs, hereafter), and therefore, the fluid flow is treated as incompressible. MHD is relatively young in natural science and engineering starting with the pioneering work of Hartmann (Hg-Dynamics-I, Math-Fys. MLA, 1937, [34]) in liquid metal duct flow under the influence of a strong external MF. Under such circumstances, the motion of the electrically conducting fluids generate the electric current and the Lorentz force, and as a consequence, the flow field is coupled and varied with the induced electromagnetic field. Today the research in MHD maybe subdivided into two purposes, there are on the one hand fluid mechanics and applied mathematics because of its complex flow characteristics, such as the MHD instability and the MHD turbulence, which contain particular dynamic behaviors due to the coupling of the flow field and the electromagnetic field. On the other hand, it is also very important in industrial production processes and technology applications, whose working principle is based on the MHD effects, which may be effective in optimizing and controlling the liquid flows in metallurgical and casting industries. Furthermore, the development of MHD pumping devices and the electromagnetic voltmeter also depends on the research in MHD flows. In addition, MHD has been advanced significantly during the last three decades by efforts to take the massive energy out of magnetic-confinement fusion device, which is thought as the most potential energy in future, and therefore, the flow characteristics and the heat transfer in liquid metal flows such as lithium or lithium lead under the influence of MHD effect deserves more attention. The design and construction of a liquid metal fusion blanket or fusion divertor requires detailed knowledge of MHD duct flows and MHD free surface flows.


Magnetic Confinement Fusion Devices Lithium Leads International Thermonuclear Experimental Reactor (ITER) Single Bubble Motion Magnaudet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bai H, Thomas BG (2001) Bubble formation during horizontal gas injection into downward-flowing liquid. Metall Mater Trans B 32(6):1143–1159CrossRefGoogle Scholar
  2. 2.
    Balasubramaniam R, Subramaniam RS (1996) Thermocapillary bubble migrationłthermal boundary layers for large Marangoni numbers. Int J Multiph Flow 22(3):593–612zbMATHCrossRefGoogle Scholar
  3. 3.
    Balasubramaniam R, Subramanian RS (2000) The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys Fluids 12(4):733–743zbMATHCrossRefGoogle Scholar
  4. 4.
    Bell JB, Colella P, Glaz HM (1989) A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys 85(2):257–283MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Beyer RP (1992) A computational model of the cochlea using the immersed boundary method. J Comput Phys 98(1):145–162zbMATHCrossRefGoogle Scholar
  6. 6.
    Blanco A, Magnaudet J (1995) The structure of the axisymmetric high - Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys Fluids 7(6):1265–1274zbMATHCrossRefGoogle Scholar
  7. 7.
    Boeck T, Krasnov D, Zienicke E (2007) Numerical study of turbulent magnetohydrodynamic channel flow. J Fluid Mech 572:179–188zbMATHCrossRefGoogle Scholar
  8. 8.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Brücker C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11(7):1781–1796MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cano-Lozano JC, Bohorquez P, Martłnez-Bazn C (2013) Wake instability of a fixed axisymmetric bubble of realistic shape. Int J Multiph Flow 51:11–21CrossRefGoogle Scholar
  11. 11.
    Cano-Lozano JC, Martinez-Bazan C, Magnaudet J et al (2016) Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys Rev Fluids 1(5):053604CrossRefGoogle Scholar
  12. 12.
    Cano-Lozano JC, Tchoufag J, Magnaudet J et al (2016) A global stability approach to wake and path instabilities of nearly oblate spheroidal rising bubbles. Phys Fluids 28(1):014102CrossRefGoogle Scholar
  13. 13.
    Campbell FC (ed) (2013) Metals fabrication: understanding the basics. ASM InternationalGoogle Scholar
  14. 14.
    Chang YC, Hou TY, Merriman B et al (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys 124(2):449–464MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Clift R, Grace JR, Weber ME (2005) Bubbles, drops, and particles. Courier CorporationGoogle Scholar
  16. 16.
    Cummins SJ, Francois MM, Kothe DB (2005) Estimating curvature from volume fractions. Comput Struct 83(6):425–434CrossRefGoogle Scholar
  17. 17.
    Davidson PA (1995) Magnetic damping of jets and vortices. J Fluid Mech 299:153–186zbMATHCrossRefGoogle Scholar
  18. 18.
    DeBar R (1974) Fundamentals of the KRAKEN code. Technical report UCIR-760Google Scholar
  19. 19.
    De Vries AWG, Biesheuvel A, Van Wijngaarden L (2002) Notes on the path and wake of a gas bubble rising in pure water. Int J Multiph Flow 28(11):1823–1835zbMATHCrossRefGoogle Scholar
  20. 20.
    Duineveld PC (1995) The rise velocity and shape of bubbles in pure water at high Reynolds number. J Fluid Mech 292:325–332CrossRefGoogle Scholar
  21. 21.
    Eckert S, Gerbeth G, Lielausis O (2000) The behaviour of gas bubbles in a turbulent liquid metal magnetohydrodynamic flow: Part I: dispersion in quasi-two-dimensional magnetohydrodynamic turbulence. Int J Multiph Flow 26(1):45–66zbMATHCrossRefGoogle Scholar
  22. 22.
    Eckert S, Gerbeth G, Lielausis O (2000) The behaviour of gas bubbles in a turbulent liquid metal magnetohydrodynamic flow: Part II: magnetic field influence on the slip ratio. Int J Multiph Flow 26(1):67–82zbMATHCrossRefGoogle Scholar
  23. 23.
    Ellingsen K, Risso F (2001) On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J Fluid Mech 440:235–268zbMATHCrossRefGoogle Scholar
  24. 24.
    Erickson RW, Maksimovic D (2007) Fundamentals of power electronics. Springer Science and Business Media, BerlinGoogle Scholar
  25. 25.
    Francois MM, Cummins SJ, Dendy ED et al (2006) A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J Comput Phys 213(1):141–173zbMATHCrossRefGoogle Scholar
  26. 26.
    Gaudlitz D, Adams NA (2009) Numerical investigation of rising bubble wake and shape variations. Phys Fluids 21(12):122102zbMATHCrossRefGoogle Scholar
  27. 27.
    Gaudlitz D, Adams NA (2010) The influence of magnetic fields on the rise of gas bubbles in electrically conductive liquids. Direct and large-eddy simulation VII. pp 465–471Google Scholar
  28. 28.
    Gerbeth G, Kaudze M, Gailitis A (1989) Deformation of an electrically conducting drop in a magnetic field. Liq Metal Magnetohydrodyn 10:287CrossRefGoogle Scholar
  29. 29.
    Ghias R, Mittal R, Lund TS (2004) A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries. AIAA paper 80(2004):6Google Scholar
  30. 30.
    Ginzburg I, Wittum G (2001) Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants. J Comput Phys 166(2):302–335zbMATHCrossRefGoogle Scholar
  31. 31.
    Grigoriadis DGE, Kassinos SC, Votyakov EV (2009) Immersed boundary method for the MHD flows of liquid metals. J Comput Phys 228(3):903–920MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Gueyffier D, Li J, Nadim A et al (1999) Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152(2):423–456zbMATHCrossRefGoogle Scholar
  33. 33.
    Haj-Hariri H, Shi Q, Borhan A (1997) Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys Fluids 9(4):845–855CrossRefGoogle Scholar
  34. 34.
    Hartmann J (1937) Hg-Dynamics-I. Math-Fys, MLAGoogle Scholar
  35. 35.
    Herrmann M (2008) A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J Comput Phys 227(4):2674–2706MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225zbMATHCrossRefGoogle Scholar
  37. 37.
    Hua J, Lin P, Stene JF (2008) Numerical simulation of gas bubbles rising in viscous liquids at high Reynolds number. Moving interface problems and applications in fluid dynamics, contemporary mathematics, vol 466:17–34Google Scholar
  38. 38.
    Huang H, Zhou X (2009) The impact of normal magnetic fields on instability of thermocapillary convection in a two-layer fluid system. J Heat Transf 131(6):062502CrossRefGoogle Scholar
  39. 39.
    Hunt JCR (1965) Magnetohydrodynamic flow in rectangular ducts. J Fluid Mech 21(4):577–590MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Iguchi M, Tokunaga H, Tatemichi H (1997) Bubble and liquid flow characteristics in a woods metal bath stirred by bottom helium gas injection. Metall Mater Trans B 28(6):1053–1061CrossRefGoogle Scholar
  41. 41.
    Knaepen B, Moreau R (2008) Magnetohydrodynamic turbulence at low magnetic Reynolds number. Ann Rev Fluid Mech 40:25–45MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Lafaurie B, Nardone C, Scardovelli R et al (1994) Modelling merging and fragmentation in multiphase flows with SURFER. J Comput Phys 113(1):134–147MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Laughton MA, Say MG (2013) Electrical engineer’s reference book. ElsevierGoogle Scholar
  44. 44.
    Leal LG (1989) Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys Fluids A Fluid Dyn 1(1):124–131CrossRefGoogle Scholar
  45. 45.
    Leboucher L (1999) Monotone scheme and boundary conditions for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number. J Comput Phys 150(1):181–198MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    López J, Hernández J, Gómez P et al (2004) A volume of fluid method based on multidimensional advection and spline interface reconstruction. J Comput Phys 195(2):718–742zbMATHCrossRefGoogle Scholar
  47. 47.
    Lunde K, Perkins RJ (1997) Observations on wakes behind spheroidal bubbles and particles. In: ASME fluids engineering division summer meeting, Vancouver, Canada, p 141Google Scholar
  48. 48.
    Ma C, Bothe D (2011) Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Int J Multiph Flow 37(9):1045–1058CrossRefGoogle Scholar
  49. 49.
    Magnaudet J, Mougin G (2007) Wake instability of a fixed spheroidal bubble. J Fluid Mech 572:311–337MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Majumdar S, Iaccarino G, Durbin P (2001) RANS solvers with adaptive structured boundary non-conforming grids. In: Annual research briefs, Center for Turbulence Research, Stanford University, pp 353–466Google Scholar
  51. 51.
    Martin DF, Colella P (2000) A cell-centered adaptive projection method for the incompressible Euler equations. J Comput Phys 163(2):271–312MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Miao X, Lucas D, Ren Z et al (2013) Numerical modeling of bubble-driven liquid metal flows with external static magnetic field. Inter J Multiph Flow 48:32–45CrossRefGoogle Scholar
  53. 53.
    Minion ML (1996) A projection method for locally refined grids. J Comput Phys 127(1):158–178MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Mittal R, Bonilla C, Udaykumar HS (2003) Cartesian grid methods for simulating flows with moving boundaries. Computational methods and experimental measurements-XI. pp 557–566Google Scholar
  55. 55.
    Mittal R, Seshadri V, Udaykumar HS (2004) Flutter, tumble and vortex induced autorotation. Theor Comput Fluid Dyn 17(3):165–170zbMATHCrossRefGoogle Scholar
  56. 56.
    Moreau RJ (2013) Magnetohydrodynamics. Springer Science and Business Media, BerlinGoogle Scholar
  57. 57.
    Mori Y, Hijikata K, Kuriyama I (1977) Experimental study of bubble motion in mercury with and without a magnetic field. J Heat Transf 99(3):404–410CrossRefGoogle Scholar
  58. 58.
    Morley NB, Smolentsev S, Munipalli R et al (2004) Progress on the modeling of liquid metal, free surface, MHD flows for fusion liquid walls. Fusion Eng Des 72(1):3–34CrossRefGoogle Scholar
  59. 59.
    Mougin G, Magnaudet J (2001) Path instability of a rising bubble. Phys Rev Lett 88(1):014502CrossRefGoogle Scholar
  60. 60.
    Mougin G, Magnaudet J (2006) Wake-induced forces and torques on a zigzagging/spiralling bubble. J Fluid Mech 567:185–194MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Mück B, Günther C, Mller U et al (2000) Three-dimensional MHD flows in rectangular ducts with internal obstacles. J Fluid Mech 418:265–295MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Müller U, Bühler L (2013) Magnetofluiddynamics in channels and containers. Springer Science and Business Media, BerlinGoogle Scholar
  63. 63.
    Mutschke G, Gerbeth G, Shatrov V et al (1997) Two-and three-dimensional instabilities of the cylinder wake in an aligned magnetic field. Phys Fluids 9(11):3114–3116 (MLA)zbMATHCrossRefGoogle Scholar
  64. 64.
    Nas S, Tryggvason G (2003) Thermocapillary interaction of two bubbles or drops. Int J Multiph Flow 29(7):1117–1135 (MLA)zbMATHCrossRefGoogle Scholar
  65. 65.
    Ni MJ, Munipalli R, Morley NB et al (2007) A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: on a rectangular collocated grid system. J Comput Phys 227(1):174–204MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Ni MJ, Munipalli R, Huang P et al (2007) A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J Comput Phys 227(1):205–228MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Ni MJ, Li JF (2012) A consistent and conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part III: on a staggered mesh. J Comput Phys 231(2):281–298MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Ni MJ (2009) Consistent projection methods for variable density incompressible Navier-Stokes equations with continuous surface forces on a rectangular collocated mesh. J Comput Phys 228(18):6938–6956MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Noh WF, Woodward P (1976) SLIC (simple line interface calculation). In: Proceedings of the fifth international conference on numerical methods in fluid dynamics, 28 June–2 July 1976, Twente University, Enschede. Springer, Berlin, pp 330–340CrossRefGoogle Scholar
  70. 70.
    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Peskin CS (1982) The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Ann Rev Fluid Mech 14(1):235–259MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Pilliod JE, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199(2):465–502MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190(2):572–600MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Popinet S (2009) An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys 228(16):5838–5866MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Prosperetti A (2004) Bubbles. Phys Fluids 16(6):1852–1865MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Quirk JJ (1994) An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput Fluids 23(1):125–142 (MLA)zbMATHCrossRefGoogle Scholar
  78. 78.
    Rao AR, Biswal PC (2001) Benard-Marangoni convection in two thin immiscible liquid layers with a uniform magnetic field. Acta Mech 151(1):61–73zbMATHCrossRefGoogle Scholar
  79. 79.
    Renardy Y, Renardy M (2002) PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J Comput Phys 183(2):400–421MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141(2):112–152MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Methods Fluids 24(7):671–691MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Samulyak R, Du J, Glimm J et al (2007) A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers. J Comput Phys 226(2):1532–1549MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Scardovelli R, Zaleski S (2003) Interface reconstruction with least - square fit and split Eulerian C Lagrangian advection. Int J Numer Methods Fluids 41(3):251–274zbMATHCrossRefGoogle Scholar
  84. 84.
    Schwarz S, Fröhlich J (2014) Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field. Int J Multiph Flow 62:134–151CrossRefGoogle Scholar
  85. 85.
    Shercliff JA (1956) The flow of conducting fluids in circular pipes under transverse magnetic fields. J Fluid Mech 1(6):644–666MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Shew WL, Pinton JF (2006) Dynamical model of bubble path instability. Phys Rev Lett 97(14):144508CrossRefGoogle Scholar
  87. 87.
    Shimomura Y (1991) Large eddy simulation of magnetohydrodynamic turbulent channel flows under a uniform magnetic field. Phys Fluids A Fluid Dyn 3(12):3098–3106zbMATHCrossRefGoogle Scholar
  88. 88.
    Sterl A (1990) Numerical simulation of liquid-metal MHD flows in rectangular ducts. J Fluid Mech 216:161–191zbMATHCrossRefGoogle Scholar
  89. 89.
    Subramanian RS, Balasubramaniam R (2001) The motion of bubbles and drops in reduced gravity. Cambridge University Press, CambridgezbMATHGoogle Scholar
  90. 90.
    Subramanian RS (1981) Slow migration of a gas bubble in a thermal gradient. AIChE J 27(4):646–654CrossRefGoogle Scholar
  91. 91.
    Subramanian RS (1983) Thermocapillary migration of bubbles and droplets. Adv Space Res 3(5):145–153CrossRefGoogle Scholar
  92. 92.
    Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159zbMATHCrossRefGoogle Scholar
  93. 93.
    Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Takatani K (2007) Mathematical modeling of incompressible MHD flows with free surface. ISIJ Int 47(4):545–551CrossRefGoogle Scholar
  95. 95.
    Tchoufag J, Magnaudet J, Fabre D (2013) Linear stability and sensitivity of the flow past a fixed oblate spheroidal bubble. Phys Fluids 25(5):054108CrossRefGoogle Scholar
  96. 96.
    Tchoufag J, Magnaudet J, Fabre D (2014) Linear instability of the path of a freely rising spheroidal bubble. J Fluid Mech 751Google Scholar
  97. 97.
    Tripathi MK, Sahu KC, Govindarajan R (2015) Dynamics of an initially spherical bubble rising in quiescent liquid. Nat Commun 6:6268CrossRefGoogle Scholar
  98. 98.
    Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192(2):593–623MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Udaykumar H, Shyy W, Rao M (1996) ELAFINT-A mixed Eulerian–Lagrangian method for fluid flows with complex and moving boundaries. In: 6th Joint thermophysics and heat transfer conference, 1996Google Scholar
  100. 100.
    Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. J Comput Phys 153(2):535–574zbMATHCrossRefGoogle Scholar
  101. 101.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37zbMATHCrossRefGoogle Scholar
  102. 102.
    Vantieghem S, Albets-Chico X, Knaepen B (2009) The velocity profile of laminar MHD flows in circular conducting pipes. Theor Comput Fluid Dyn 23(6):525–533zbMATHCrossRefGoogle Scholar
  103. 103.
    Veldhuis C, Biesheuvel A, Van Wijngaarden L (2008) Shape oscillations on bubbles rising in clean and in tap water. Phys Fluids 20(4):040705zbMATHCrossRefGoogle Scholar
  104. 104.
    Walker JS (1981) Magneto-hydrodynamic flows in rectangular ducts with thin conducting walls. 1. Constant-area and variable-area ducts with strong uniform magnetic-fields. Journal de Mcanique 20(1):79–112Google Scholar
  105. 105.
    Wang Z, Mukai K, Izu D (1999) Influence of wettability on the behavior of argon bubbles and fluid flow inside the nozzle and mold. ISIJ Int 39(2):154–163CrossRefGoogle Scholar
  106. 106.
    Wesseling P (1995) Introduction to multigrid methodsGoogle Scholar
  107. 107.
    Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(3):350–356zbMATHCrossRefGoogle Scholar
  108. 108.
    Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamicsGoogle Scholar
  109. 109.
    Yang M, Ma N (2005) A computational study of natural convection in a liquid-encapsulated molten semiconductor with a horizontal magnetic field. Int J Heat Fluid Flow 26(5):810–816CrossRefGoogle Scholar
  110. 110.
    Ye T, Mittal R, Udaykumar HS et al (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Zang Y, Street RL, Koseff JR (1994) A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J Comput Phys 114(1):18–33MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Zenit R, Magnaudet J (2008) Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys Fluids 20(6):061702zbMATHCrossRefGoogle Scholar
  113. 113.
    Zhang C, Eckert S, Gerbeth G (2005) Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. Int J Multiph Flow 31(7):824–842zbMATHCrossRefGoogle Scholar
  114. 114.
    Zhang C, Eckert S, Gerbeth G (2007) The flow structure of a bubble-driven liquid-metal jet in a horizontal magnetic field. J Fluid Mech 575:57–82zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Chinese Academy of SciencesBeijingChina

Personalised recommendations