Skip to main content

Langevin Equation and Its Microscopic Derivation

  • Chapter
  • First Online:
Statistical Mechanics for Athermal Fluctuation

Part of the book series: Springer Theses ((Springer Theses))

  • 642 Accesses

Abstract

The Langevin equation is reviewed as a fundamental equation for the Brownian motion. We first review the mathematical characters of the Langevin equation, and show its microscopic derivation by an asymptotic expansion of master equations (i.e., the system size expansion). By combining the kinetic theory, the Langevin equation is derived for various systems from microscopic dynamics. We finally discuss unsolved problems within the framework of the original system size expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The variable transformation \(\tau \equiv \varepsilon t\) is introduced for renormalization of the divergence of the relaxation time, in this sense.

  2. 2.

    This means that the system size expansion is not a uniform asymptotic expansion in terms of the velocity.

  3. 3.

    To avoid these corrections, a more elegant choice of scaled variables is proposed in Ref. [9].

References

  1. R. Brown, Philos. Mag. 4, 121 (1828)

    Google Scholar 

  2. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905)

    Article  ADS  Google Scholar 

  3. P. Langevin, Comptes Rendues 146, 530 (1906)

    Google Scholar 

  4. R. Kubo, M. Toda, N. Hashitsume, Statsitical Physics II, 2nd edn. (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  5. G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)

    MATH  Google Scholar 

  6. R. Phillips, J. Kondev, J. Theriot, Physical Biology of the Cell (Garland Science, New York, 2008)

    Google Scholar 

  7. F. Black, M. Scholes, J. Political Econ. 81, 637 (1973)

    Article  MathSciNet  Google Scholar 

  8. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North-Holland, Amsterdam, 2007)

    Google Scholar 

  9. N.G. van Kampen, Can. J. Phys. 39, 551 (1961)

    Article  ADS  Google Scholar 

  10. C.T.J. Alkemade, N.G. van Kampen, D.K.C. MacDonald, Proc. R. Soc. Lond. Ser. A 271, 449 (1963)

    Article  ADS  Google Scholar 

  11. A. Siegel, J. Math. Phys. 1, 378 (1960)

    Article  ADS  Google Scholar 

  12. H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989)

    Google Scholar 

  13. C. Jarzynski, J. Stat. Phys. 98, 77 (2000)

    Article  MathSciNet  Google Scholar 

  14. H. Mori, Prog. Theor. Phys. 34, 399 (1965)

    Article  ADS  Google Scholar 

  15. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  16. P. Résibois, M. de Leener, Classical Kinetic Theory of Liquids (Wiley, New York, 1977)

    MATH  Google Scholar 

  17. N.V. Brilliantov, T. Pöschel, Kinetic of Theory of Granular Gases (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  18. E. Ben-Isaac, Y.K. Park, G. Popescu, F.L.H. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011)

    Article  ADS  Google Scholar 

  19. N. Gov, Phys. Rev. Lett. 93, 268104 (2004)

    Article  ADS  Google Scholar 

  20. J. Gabelli, B. Reulet, Phys. Rev. B 80, 161203(R) (2009)

    Article  ADS  Google Scholar 

  21. A.M. Zaklikiewicz, Solid-State Electron. 43, 11 (1999)

    Article  ADS  Google Scholar 

  22. Y.M. Blanter, M. Bu, D.P. Theh, U. De Gene, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  23. J.P. Pekola, Phys. Rev. Lett. 93, 206601 (2004)

    Article  ADS  Google Scholar 

  24. P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Phys. Rev. Lett. 104, 248001 (2010)

    Article  ADS  Google Scholar 

  25. J. Talbot, R.D. Wildman, P. Viot, Phys. Rev. Lett. 107, 138001 (2011)

    Article  ADS  Google Scholar 

  26. A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, A. Puglisi, Phys. Rev. Lett. 110, 120601 (2013)

    Article  ADS  Google Scholar 

  27. A. Gnoli, A. Puglisi, H. Touchette, Europhys. Lett. 102, 14002 (2013)

    Article  ADS  Google Scholar 

  28. A. Gnoli, A. Sarracino, A. Puglisi, A. Petri, Phys. Rev. E 87, 052209 (2013)

    Article  ADS  Google Scholar 

  29. L.O. Gálvez, and D. van der Meer, J. Stat. Mech. 043206 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanazawa, K. (2017). Langevin Equation and Its Microscopic Derivation. In: Statistical Mechanics for Athermal Fluctuation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6332-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6332-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6330-5

  • Online ISBN: 978-981-10-6332-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics