Skip to main content

Energy Transport Between Athermal Systems

  • Chapter
  • First Online:
Statistical Mechanics for Athermal Fluctuation

Part of the book series: Springer Theses ((Springer Theses))

  • 624 Accesses

Abstract

Energy transport between two athermal baths is studied on the basis of stochastic energetics and the non-Gaussian–Langevin equation. We consider a non-Gaussian stochastic model of heat conduction between athermal baths, and derive several simple laws for heat current: the generalized Fourier law and the generalized fluctuation theorem. The direction of heat current is shown dependent on the detail of heat conducting wires, which explicitly shows the absence of the first law for athermal systems. We finally study energy transport between two granular motors as a realistic example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kanazawa, T. Sagawa, H. Hayakawa, Phys. Rev. E 87, 052124 (2013)

    Article  ADS  Google Scholar 

  2. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  Google Scholar 

  3. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

    Article  ADS  Google Scholar 

  4. R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)

    Article  Google Scholar 

  5. C. Jarzynski, D.K. Wójcik, Phys. Rev. Lett. 92, 230602 (2004)

    Article  ADS  Google Scholar 

  6. R. van Zon, S. Ciliberto, E.G.D. Cohen, Phys. Rev. Lett. 92, 130601 (2004)

    Article  Google Scholar 

  7. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  8. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  9. J. Kurchan, J. Phys. A 31, 3719 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  11. C. Jarzynski, J. Stat. Phys. 98, 77 (2000)

    Article  MathSciNet  Google Scholar 

  12. T. Hatano, S.-I. Sasa, Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  13. T. Harada, S.-I. Sasa, Phys. Rev. Lett. 95, 130602 (2005)

    Article  ADS  Google Scholar 

  14. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  15. J.D. Noh, J.-M. Park, Phys. Rev. Lett. 108, 240603 (2012)

    Article  ADS  Google Scholar 

  16. N. Garnier, S. Ciliberto, Phys. Rev. E 71, 060101(R) (2005)

    Article  ADS  Google Scholar 

  17. S. Ciliberto, A. Imparato, A. Naert, M. Tanase, Phys. Rev. Lett. 110, 180601 (2013)

    Article  ADS  Google Scholar 

  18. R. Kubo, M. Toda, N. Hashitsume, Statsitical Physics II, 2nd edn. (Springer, Berlin, 1991)

    Google Scholar 

  19. F. Bonetto, J.L. Lebowitz, L. Rey-Bellet, in Mathematical Physics 2000, ed. by A. Fokas, et al. (Imperial College Press, London, 2000), p. 128

    Chapter  Google Scholar 

  20. J. Andrieux, P. Gaspard, J. Stat. Mech. (2007) P02006

    Google Scholar 

  21. K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  22. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  23. F. van Wijland, Phys. Rev. E 74, 063101 (2006)

    Article  ADS  Google Scholar 

  24. P. Visco, J. Stat. Mech. (2006) P06006

    Google Scholar 

  25. E. Ben-Isaac, Y.K. Park, G. Popescu, F.L.H. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011)

    Article  ADS  Google Scholar 

  26. N. Gov, Phys. Rev. Lett. 93, 268104 (2004)

    Article  ADS  Google Scholar 

  27. P. Eshuis, K. van der Weele, D. Lohse, D. van der Meer, Phys. Rev. Lett. 104, 248001 (2010)

    Article  ADS  Google Scholar 

  28. J. Talbot, R.D. Wildman, P. Viot, Phys. Rev. Lett. 107, 138001 (2011)

    Article  ADS  Google Scholar 

  29. A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, A. Puglisi, Phys. Rev. Lett. 110, 120601 (2013)

    Article  ADS  Google Scholar 

  30. A. Gnoli, A. Puglisi, H. Touchette, Europhys. Lett. 102, 14002 (2013)

    Article  ADS  Google Scholar 

  31. A. Gnoli, A. Sarracino, A. Puglisi, A. Petri, Phys. Rev. E 87, 052209 (2013)

    Article  ADS  Google Scholar 

  32. J. Gabelli, B. Reulet, Phys. Rev. B 80, 161203(R) (2009)

    Article  ADS  Google Scholar 

  33. A.M. Zaklikiewicz, Solid-State Electron. 43, 11 (1999)

    Article  ADS  Google Scholar 

  34. Y.M. Blanter, M. Bu, D.P. Theh, U. De Gene, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  35. J.P. Pekola, Phys. Rev. Lett. 93, 206601 (2004)

    Article  ADS  Google Scholar 

  36. J. Łuczka, T. Czernik, P. Hänggi, Phys. Rev. E 56, 3968 (1997)

    Article  ADS  Google Scholar 

  37. A. Baule, E.G.D. Cohen, Phys. Rev. E 79, 030103(R) (2009)

    Article  ADS  Google Scholar 

  38. W.A.M. Morgado, S.M. Duarte, Queiros. Phys. Rev. E 86, 041108 (2012)

    Article  ADS  Google Scholar 

  39. K. Kanazawa, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 108, 210601 (2012)

    Article  ADS  Google Scholar 

  40. K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 114, 090601 (2015)

    Article  ADS  Google Scholar 

  41. K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, J. Stat. Phys. 160, 1294 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Casas-Vazquez, D. Jou, Rep. Prog. Phys. 66, 1937 (2003)

    Article  ADS  Google Scholar 

  43. S.-I. Sasa, H. Tasaki, J. Stat. Phys. 125, 125 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. T. Hatano, D. Jou, Phys. Rev. E 67, 026121 (2003)

    Article  ADS  Google Scholar 

  45. J. Ren, B. Li, Phys. Rev. E 81, 021111 (2010)

    Article  ADS  Google Scholar 

  46. P. Pradhan, C.P. Amann, U. Seifert, Phys. Rev. Lett. 105, 150601 (2010)

    Article  ADS  Google Scholar 

  47. P. Pradhan, R. Ramsperger, U. Seifert, Phys. Rev. E 84, 041104 (2011)

    Article  ADS  Google Scholar 

  48. T. Li, B. Min, Z. Wang, Phys. Rev. E 89, 022144 (2014)

    Article  ADS  Google Scholar 

  49. C.-É. Lecomte, A. Naert, J. Stat. Mech. P1, 2014 (1004)

    Google Scholar 

  50. L.O. Gálvez, D. van der Meer, J. Stat. Mech. (2016) P043206

    Google Scholar 

  51. J.-Y. Chastaing, J.-C. Geminard, A. Naert, Phys. Rev. E 94, 062110 (2016)

    Article  ADS  Google Scholar 

  52. R. Kubo, J. Math. Phys. 4, 174 (1963)

    Article  ADS  Google Scholar 

  53. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanazawa, K. (2017). Energy Transport Between Athermal Systems. In: Statistical Mechanics for Athermal Fluctuation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6332-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6332-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6330-5

  • Online ISBN: 978-981-10-6332-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics