Skip to main content

Tri-Modality Intravascular Imaging System

  • Chapter
  • First Online:
Multimodality Imaging
  • 740 Accesses

Abstract

Atherosclerosis is one of the major causes of morbidity and mortality in developed countries. Early detection of plaque lesions is the first and most necessary step in preventing the lethal consequences of atherosclerosis. Currently, most intravascular imaging systems focus on single- or dual-modality imaging which are not enough to provide an accurate characterization of vulnerable plaque. To address this issue, tri-modality imaging system has been developed and shown improved characteristization. This chapter outlines two tri-modality intravascular imaging systems which combine IVUS, OCT, and NIRF imaging together, discusses the design of a tri-modality imaging system and probe, and present representative experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abran M, Cloutier G, Cardinal MH, Chayer B, Tardif JC, Lesage F (2014) Development of a photoacoustic, ultrasound and fluorescence imaging catheter for the study of atherosclerotic plaque. IEEE Trans Biomed Circuits Syst 8(5):696–703. https://doi.org/10.1109/TBCAS.2014.2360560

    Article  PubMed  Google Scholar 

  • Abran M, Stahli BE, Merlet N, Mihalache-Avram T, Mecteau M, Rheaume E, Busseuil D, Tardif JC, Lesage F (2015) Validating a bimodal intravascular ultrasound (IVUS) and near-infrared fluorescence (NIRF) catheter for atherosclerotic plaque detection in rabbits. Biomed Opt Express 6(10):3989–3999. https://doi.org/10.1364/BOE.6.003989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo J, Botas J, Garcia E, Elizaga J, Osende J, Soriano J, Abeytua M, Delcan JL (1998) Mechanisms of residual lumen stenosis after high-pressure stent implantation: a quantitative coronary angiography and intravascular ultrasound study. Circulation 98:112–118

    Article  CAS  Google Scholar 

  • Brezinski ME (2006) Optical coherence tomography for identifying unstable coronary plaque. Int J Cardiol 107(2):154–165. https://doi.org/10.1016/j.ijcard.2005.07.066

    Article  PubMed  Google Scholar 

  • Brezinski ME (2007) Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside? J Biomed Opt 12(5):051705. https://doi.org/10.1117/1.2795689

    Article  PubMed  Google Scholar 

  • Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fujimoto JG (1996) Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93(6):1206–1213

    Article  CAS  Google Scholar 

  • Fischer T, Gemeinhardt I, Wagner S, Stieglitz DV, Schnorr J, Hermann KG, Ebert B, Petzelt D, Macdonald R, Licha K, Schirner M, Krenn V, Kamradt T, Taupitz M (2006) Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol 13(1):4–13. https://doi.org/10.1016/j.acra.2005.07.010

    Article  PubMed  Google Scholar 

  • Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21:1361–1367

    Article  CAS  Google Scholar 

  • Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1:970–972

    Article  CAS  Google Scholar 

  • Grech ED (2003) Pathophysiology and investigation of coronary artery disease. BMJ 326(7397):1027–1030. https://doi.org/10.1136/bmj.326.7397.1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanekamp C, Koolen J, Pijls J, Michels H, Bonnier H (1999) Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment. Circulation 99:1015–1021

    Article  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  Google Scholar 

  • Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609

    Article  Google Scholar 

  • Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  Google Scholar 

  • Landini L, Verrazzani L (1990) Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach. IEEE Trans Ultrason Ferroelectr Freq Control 37(5):448–456. https://doi.org/10.1109/58.105251

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, Park K, Oh WY, Yoo H, Kim JW (2014) Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 7(4):560–569. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001498

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ma T, Jing J, Zhang J, Patel PM, Kirk Shung K, Zhou Q, Chen Z (2013) Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J Biomed Opt 18(10):100502. https://doi.org/10.1117/1.JBO.18.10.100502

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, He Y, Shung KK, Zhou Q, Patel PM, Chen Z (2015a) Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep 5:18406. https://doi.org/10.1038/srep18406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Gong X, Liu C, Lin R, Hau W, Bai X, Song L (2015b) High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. J Biomed Opt 20(6):065006. https://doi.org/10.1117/1.jbo.20.6.065006

    Article  Google Scholar 

  • Li Y, Jing J, Qu Y, Miao Y, Zhang B, Ma T, Yu M, Zhou Q, Chen Z (2017) Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed Opt Express 8(2):1036–1044. https://doi.org/10.1364/BOE.8.001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Ma T, Jing J, Li X, Li J, Shung KK, Zhou Q, Zhang J, Chen Z (2014) Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Opt Lett 39(23):6652–6655. https://doi.org/10.1364/OL.39.006652

    Article  PubMed  PubMed Central  Google Scholar 

  • Low AF, Tearney GJ, Bouma BE, Jang IK (2005) Technology Insight: optical coherence tomography—current status and future development. Nat Clin Pract Cardiovasc Med 3:154–162

    Article  Google Scholar 

  • Mintz GS, Weissman NJ (2006) Intravascular ultrasound in the drug-eluting stent era. J Am Coll Cardiol 48:421

    Article  Google Scholar 

  • Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108(15):1772–1778. https://doi.org/10.1161/01.CIR.0000087481.55887.C9

    Article  PubMed  Google Scholar 

  • Narula J, Strauss HW (2005) Imaging of unstable atherosclerotic lesions. Eur J Nucl Med Mol Imaging 32(1):1–5. https://doi.org/10.1007/s00259-004-1580-3

    Article  PubMed  Google Scholar 

  • Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    Article  CAS  Google Scholar 

  • Piao Z, Ma T, Li J, Wiedmann MT, Huang S, Yu M, Kirk Shung K, Zhou Q, Kim CS, Chen Z (2015) High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 m. Appl Phys Lett 107(8):083701. https://doi.org/10.1063/1.4929584

    Article  Google Scholar 

  • Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, Leon MB (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–1585

    Article  CAS  Google Scholar 

  • Puri R, Worthley MI, Nicholls SJ (2011) Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev Cardiol 8(3):131–139. https://doi.org/10.1038/nrcardio.2010.210

    Article  PubMed  Google Scholar 

  • Raffel OC, Merchant FM, Tearney GJ, Chia S, Gauthier DD, Pomerantsev E, Mizuno K, Bouma BE, Jang IK (2008) In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 29(14):1721–1728. https://doi.org/10.1093/eurheartj/ehn286

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, Matsumoto D, Tanino Y, Ogasawara D, Kawamori H, Kato H, Miyoshi N, Yokoyama M, Serruys PW, Hirata KI (2008) Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J 29:1136–1146

    Article  Google Scholar 

  • Sethuraman S, Aglyamov SR, Amirian JH, Smalling RW, Emelianov SY (2007) Intravascular photoacoustic imaging using an IVUS imaging catheter. IEEE Trans Ultrason Ferroelectr Freq Control 54(5):978–986

    Article  Google Scholar 

  • Stanga PE, Lim JI, Hamilton P (2003) Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology 110(1):15–21; quiz 22-13

    Article  Google Scholar 

  • Tearney GJ, Jang IK, Bouma BE (2006) Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 11(2):021002. https://doi.org/10.1117/1.2192697

    Article  PubMed  PubMed Central  Google Scholar 

  • Ughi GJ, Verjans J, Fard AM, Wang H, Osborn E, Hara T, Mauskapf A, Jaffer FA, Tearney GJ (2015) Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging. Int J Cardiovasc Imaging 31(2):259–268. https://doi.org/10.1007/s10554-014-0556-z

    Article  PubMed  Google Scholar 

  • Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 3(84):84ra45. https://doi.org/10.1126/scitranslmed.3001577

    Article  Google Scholar 

  • Wang P, Ma T, Slipchenko MN, Liang S, Hui J, Shung KK, Roy S, Sturek M, Zhou Q, Chen Z, Cheng JX (2014) High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser. Sci Rep 4:6889. https://doi.org/10.1038/srep06889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Li X, Zhou Q, Shung KK, Chen Z (2011) Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging. J Biomed Opt 16(10):106001. https://doi.org/10.1117/1.3631798

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li X, Wang T, Kumavor PD, Aguirre A, Shung KK, Zhou Q, Sanders M, Brewer M, Zhu Q (2011) Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomed Opt Exp 2(9):2551–2561. https://doi.org/10.1364/BOE.2.002551

    Article  Google Scholar 

  • Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J (1998) Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci 39(7):1286–1290

    CAS  PubMed  Google Scholar 

  • Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, Suter MJ, Chan RC, Evans JA, Jang IK, Nishioka NS, de Boer JF, Bouma BE (2006) Comprehensive volumetric optical microscopy in vivo. Nat Med 12:1429–1433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Chen, Z. (2020). Tri-Modality Intravascular Imaging System. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics