Skip to main content

The Integration of IVUS and OCT

  • Chapter
  • First Online:

Abstract

Ultrasound and optical coherence tomography (OCT) provide complementary capabilities—ultrasound has high penetration depth but low resolution; OCT has high resolution but low penetration depth. The integration of these two technologies enable superior imaging capabilities for intravascular applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfonso F, Dutary J, Paulo M, Gonzalo N, Pérez-Vizcayno MJ, Jiménez-Quevedo P, Escaned J, Bañuelos C, Hernández RMC (2012) Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart 98(16):1213–1220

    Article  PubMed  Google Scholar 

  • Arthurs ZM, Bishop PD, Feiten LE, Eagleton MJ, Clair DG, Kashyap VS (2010) Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J Vasc Surg 51(4):933–939

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezerra H (2016) Intravascular OCT in PCI. American College of Cardiology. http://www.acc.org/latest-in-cardiology/articles/2016/06/13/10/01/intravascular-oct-in-pci

  • Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (2009) Intracoronary optical coherence tomography: a comprehensive review: clinical and research applications. JACC: Cardiovasc Interv 2(11):1035–1046

    PubMed  Google Scholar 

  • Boppart SA, Bouma BE, Pitris C, Southern JF, Brezinski ME, Fujimoto JG (1998) In vivo cellular optical coherence tomography imaging. Nat Med 4(7):861–865

    Article  CAS  PubMed  Google Scholar 

  • Bouma BE, Tearney GJ, Vakoc BJ, Yun SH (2008) Optical frequency domain imaging. In: Drexler W, Fujimoto JG (eds) Optical coherence tomography: technology and applications. Springer, Berlin, Heidelberg, pp 209–237. https://doi.org/10.1007/978-3-540-77550-8_7

    Chapter  Google Scholar 

  • Bourantas CV, Jaffer FA, Gijsen FJ, Van Soest G, Madden SP, Courtney BK, Fard AM, Tenekecioglu E, Zeng Y, Van Der Steen AFW (2016) Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J 38(6):400–412

    Article  PubMed Central  Google Scholar 

  • Brezinski ME (2006) OCT in cardiovascular medicine: animal models. In: Optical coherence tomography: principles and applications. p 414

    Chapter  Google Scholar 

  • Cannata JM, Ritter TA, Wo-Hsing C, Silverman RH, Shung KK (2003) Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications. IEEE Trans Ultrason Ferroelectr Freq Control 50(11):1548–1557. https://doi.org/10.1109/TUFFC.2003.1251138

    Article  PubMed  Google Scholar 

  • Chamié D, Bezerra HG, Attizzani GF, Yamamoto H, Kanaya T, Stefano GT, Fujino Y, Mehanna E, Wang W, Abdul-Aziz A (2013) Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC: Cardiovasc Interv 6(8):800–813

    PubMed  Google Scholar 

  • Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189

    Article  PubMed  Google Scholar 

  • Cobbold RSCC (2007) Foundations of biomedical ultrasound. Oxford University Press, USA

    Google Scholar 

  • Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 34(10):719–728

    Article  CAS  PubMed  Google Scholar 

  • Farooq MU, Khasnis A, Majid A, Kassab MY (2009) The role of optical coherence tomography in vascular medicine. Vasc Med 14:63–71

    Article  PubMed  Google Scholar 

  • Fassa AA, Wagatsuma K, Higano ST, Mathew V, Barsness GW, Lennon RJ, Holmes DR Jr, Lerman A (2005) Intravascular ultrasound-guided treatment for angiographically indeterminate left main coronary artery disease: a long-term follow-up study. J Am Coll Cardiol 45:204–211

    Article  PubMed  Google Scholar 

  • Ferrante G, Nakano M, Prati F, Niccoli G, Mallus MT, Ramazzotti V, Montone RA, Kolodgie FD, Virmani R, Crea F (2010) High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes. Circulation 122:2505–2513

    Article  CAS  PubMed  Google Scholar 

  • Fleg JL, Stone GW, Fayad ZA, Granada JF, Hatsukami TS, Kolodgie FD, Ohayon J, Pettigrew R, Sabatine MS, Tearney GJ, Waxman S, Domanski MJ, Srinivas PR, Narula J (2012) Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc Imaging 5(9):941–955

    PubMed  Google Scholar 

  • Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, Tamaru H, Sawada H, Naito Y, Ohyanagi M (2015) Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study. JACC: Cardiovasc Imaging 8(4):451–460

    PubMed  Google Scholar 

  • Gatto L, Chisari A, La Manna A, Burzotta F, Di Vito L, Mallus MT, Cremonesi A, Pappalardo A, Albertucci M, Prati F (2013) TCT-555 comparative incidence of optical coherence tomography features indicative of uncorrected stent deployment in patients with and without major adverse cardiac events in the OCT guided arm of the CLI-OPCI study. J Am Coll Cardiol 62(18_S1):B167

    Article  Google Scholar 

  • Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Garcia-Garcia HM, Onuma Y, van Geuns RJ, Ligthart J, Regar E (2011) Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Int J Cardiol 150(2):151–155

    Article  PubMed  Google Scholar 

  • Habara M, Nasu K, Terashima M, Kaneda H, Yokota D, Ko E, Ito T, Kurita T, Tanaka N, Kimura M, Ito T, Kinoshita Y, Tsuchikane E, Asakura K, Asakura Y, Katoh O, Suzuki T (2012) Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ Cardiovasc Interv 5(2):193–201

    Google Scholar 

  • Hoang KC, Edris A, Su J, Mukai DS, Mahon S, Petrov AD, Kern M, Ashan C, Chen Z, Tromberg BJ (2009) Use of an oxygen-carrying blood substitute to improve intravascular optical coherence tomography imaging. J Biomed Opt 14(3):034028

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katwal AB, Lopez JJ (2015) Technical considerations and practical guidance for intracoronary optical coherence tomography. In: Price MJ (ed) Intravascular imaging: OCT and IVUS, an issue of interventional cardiology clinics, vol 4. Elsevier Health Sciences, pp 239–250

    Google Scholar 

  • Kawasaki M, Bouma BE, Bressner J, Houser SL, Nadkarni SK, MacNeill BD, Jang I-K, Fujiwara H, Tearney GJ (2006) Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol 48(1):81–88

    Article  PubMed  Google Scholar 

  • Kelly J, Leonard M, Tantigate C, Safari A (1997) Effect of composition on the electromechanical properties of (1-x)Pb(Mg1/3Nb2/3)O3− XPbTiO3 ceramics. J Am Ceram Soc 80(4):957–964. https://doi.org/10.1111/j.1151-2916.1997.tb02927.x

    Article  CAS  Google Scholar 

  • Kereiakes DJ, Szyniszewski AM, Wahr D, Herrmann HC, Simon DI, Rogers C, Kramer P, Shear W, Yeung AC, Shunk KA, Chou TM, Popma J, Fitzgerald P, Carroll TE, Forer D, Adelman DC (2003) Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: procedural and long-term results. Circulation 108(11):1310–1315

    Article  PubMed  Google Scholar 

  • Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CP, Hofstra L, Narula J (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108:3134–3139

    Article  CAS  PubMed  Google Scholar 

  • Leitgeb R, Hitzenberger CK, Fercher AF (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11(8):889–894

    Article  CAS  PubMed  Google Scholar 

  • Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A (2004) Ultrahigh resolution Fourier domain optical coherence tomography. Opt Express 12(10):2156–2165

    Article  CAS  PubMed  Google Scholar 

  • Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Hollenberg SM, Khot UN (2011) 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. Circulation 124(23):2574–2609

    Article  PubMed  Google Scholar 

  • Li J, Chen Z (2016) Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques [INVITED PAPER]. J Biomed Photonics Eng 1(4):209–224

    Google Scholar 

  • Li X, Yin J, Hu C, Zhou Q, Shung KK, Chen Z (2010) High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett 97(13):133702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li BH, Leung ASO, Soong A, Munding CE, Lee H, Thind AS, Munce NR, Wright GA, Rowsell CH, Yang VXD (2013a) Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter Cardiovasc Interv 81(3):494–507

    Article  PubMed  Google Scholar 

  • Li J, Ma T, Jing J, Zhang J, Patel PM, Shung KK, Zhou Q, Chen Z (2013b) Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J Biomed Opt 18(10):100502–100502

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, Johnston A, Liang S, Ma T, Shung KK (2014a) Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC: Cardiovasc Imaging 7(1):101–103

    PubMed  Google Scholar 

  • Li J, Ma T, Mohar D, Correa A, Minami H, Jing J, Zhou Q, Patel PM, Chen Z (2014b) Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization. In: SPIE BiOS, International Society for Optics and Photonics, pp 892635–892636

    Google Scholar 

  • Li X, Li J, Jing J, Ma T, Liang S, Zhang J, Mohar D, Raney A, Mahon S, Brenner M (2014c) Integrated IVUS-OCT imaging for atherosclerotic plaque characterization. IEEE J Sel Top Quantum Electron 20(2):196–203

    Article  CAS  Google Scholar 

  • Li J, Minami H, Steward E, Ma T, Mohar D, Robertson C, Shung K, Zhou Q, Patel P, Chen Z (2015a) Optimal flushing agents for integrated optical and acoustic imaging systems. J Biomed Opt 20(5):056005

    Article  PubMed Central  Google Scholar 

  • Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, He Y, Shung KK, Zhou Q, Patel PM, Chen Z (2015b) Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep 5:18406

    Google Scholar 

  • Liang S, Ma T, Jing J, Li X, Li J, Shung KK, Zhou Q, Zhang J, Chen Z (2014) Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Opt Lett 39(23):6652–6655

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, Tearney GJ (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat Med 17:1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 497:233–241

    Article  Google Scholar 

  • Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, Bugiardini R (2006) Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol 98(2):156–159

    Article  PubMed  Google Scholar 

  • Mao Y, Chang S, Flueraru C (2010) Fiber lenses for ultra-small probes used in optical coherent tomography. J Biomed Sci Eng 3:27–34

    Article  Google Scholar 

  • McCullough PA (2008) Contrast-induced acute kidney injury. J Am Coll Cardiol 51(15):1419–1428

    Article  PubMed  Google Scholar 

  • Mintz GS (2016) Understanding why and when optical coherence tomography does not detect vulnerable plaques is it important? Circ Cardiovasc Interv 9(7):e004144

    Google Scholar 

  • Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C (2013) 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 34(38):2949–3003

    Article  PubMed  Google Scholar 

  • Moon S, Piao Z, Kim C-S, Chen Z (2013) Lens-free endoscopy probe for optical coherence tomography. Opt Lett 38(12):2014–2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206

    Article  PubMed  Google Scholar 

  • Nakano M, Kolodgie FD, Otsuka F, Yazdani SK, Ladich ER, Virmani R (2012) Vulnerable plaque. In: Coronary heart disease. pp 192–195

    Google Scholar 

  • Narula J, Strauss HW (2007) The popcorn plaques. Nat Med 13:532–534

    Article  CAS  PubMed  Google Scholar 

  • Ng A (2011) Resolution in ultrasound imaging. Contin Educ Anaesth Crit Care Pain 11(5):186–192

    Article  Google Scholar 

  • Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW (2001) Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions an autoradiographic study. Circulation 104:203–208

    Article  CAS  PubMed  Google Scholar 

  • Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Takarada S, Kubo T, Kimura K, Tanaka A, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2012) Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J 76(4):922–927

    Article  PubMed  Google Scholar 

  • Phipps JE, Hoyt T, Vela D, Wang T, Michalek JE, Buja LM, Jang I-K, Milner TE, Feldman MD (2016) Diagnosis of thin-capped fibroatheromas in intravascular optical coherence tomography images effects of light scattering. Circ Cardiovasc Interv 9 (7):e003163

    Google Scholar 

  • Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang I-K, Akasaka T, Costa M, Guagliumi G, Grube E (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415

    Article  PubMed  Google Scholar 

  • Prati F, Di Vito L, Biondi-Zoccai G, Occhipinti M, La Manna A, Tamburino C, Burzotta F, Trani C, Porto I, Ramazzotti V (2012) Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8(7):823–829

    Article  PubMed  Google Scholar 

  • Puri R, Worthley MI, Nicholls SJ (2011) intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev 8:131–139

    Google Scholar 

  • Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, Izatt JA, Smith SD (2005) Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol 123(8):1053–1059

    Article  PubMed  Google Scholar 

  • Rekhter MD (2002) How to evaluate plaque vulnerability in animal models of atherosclerosis? Cardiovasc Res 54:36–41

    Article  CAS  PubMed  Google Scholar 

  • Rekhter MD, Hicks GW, Brammer DW, Work CW, Kim JS, Gordon D, Keiser JA, Ryan MJ (1998) Animal model that mimics atherosclerotic plaque rupture. Circ Res 83(7):705–713

    Article  CAS  PubMed  Google Scholar 

  • Rieber J, Meissner O, Babaryka G, Reim S, Oswald M et al (2006) Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology. Diagn Methods 17(5):425–430

    Article  PubMed  Google Scholar 

  • Roy P, Steinberg DH, Sushinsky SJ, Okabe T, Slottow TLP, Kaneshige K, Xue Z, Satler LF, Kent KM, Suddath WO (2008) The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J 29(15):1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 45:953–957

    Article  CAS  Google Scholar 

  • Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, Matsumoto D, Tanino Y, Ogasawara D, Kawamori H (2008) Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J 29(9):1136–1146

    Article  PubMed  Google Scholar 

  • Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM (2001) Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol 38(2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Sonoda S, Morino Y, Ako J, Terashima M, Hassan AHM, Bonneau HN, Leon MB, Moses JW, Yock PG, Honda Y (2004) Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the sirius trial. J Am Coll Cardiol 43(11):1959–1963

    Article  PubMed  Google Scholar 

  • Stokes GG (1849) On the theories of the internal friction in fluids in motion, and of the equilibrium and motion of elastic solids. Trans Cambridge Philos Soc 8(22):287–342

    Google Scholar 

  • Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235. https://doi.org/10.1056/NEJMoa1002358

    Article  CAS  PubMed  Google Scholar 

  • Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation 126(2):172–181

    Article  PubMed  Google Scholar 

  • Suter MJ, Kashiwagi M, Gallagher KA, Nadkarni SK, Asanani N, Tanaka A, Conditt GB, Tellez A, Milewski K, Kaluza GL, Granada JF, Bouma BE, Tearney GJ (2015) Optimizing flushing parameters in intracoronary optical coherence tomography: an in vivo swine study. Int J Cardiovasc Imaging 31(6):1097–1106. https://doi.org/10.1007/s10554-015-0668-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahara S, Bezerra HG, Sirbu V, Kyono H, Musumeci G, Rosenthal N, Guagliumi G, Costa MA (2010) Angiographic, IVUS and OCT evaluation of the long-term impact of coronary disease severity at the site of overlapping drug-eluting and bare metal stents: a substudy of the ODESSA trial. Heart 96(19):1574–1578

    Article  PubMed  Google Scholar 

  • Tan KM, Shishkov M, Chee A, Applegate MB, Bouma BE, Suter MJ (2012) Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance. Biomed Opt Express 3(8):1947–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, Paaske WP, Bøtker HE, Falk E (2010) Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circulation 3:384–391

    Google Scholar 

  • Tuchin VV, Xu X, Wang RK (2002) Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood. Appl Opt 14(1):258–271

    Article  CAS  PubMed  Google Scholar 

  • Virmani R (2011) Are our tools for the identification of TCFA ready and do we know them? JACC: Cardiovasc Imaging 4(6):656–658

    Google Scholar 

  • Wang T, Wieser W, Springeling G, Beurskens R, Lancee CT, Pfeiffer T, van der Steen AFW, Huber R, van Soest G (2013) Intravascular optical coherence tomography imaging at 3200 frames per second. Opt Lett 38(10):1715–1717

    Article  PubMed  Google Scholar 

  • Waxman S, Ishibashi F, Muller JE (2006) Detection and treatment of vulnerable plaques and vulnerable patients novel approaches to prevention of coronary events. Circulation 114(22):2390–2411

    Article  PubMed  Google Scholar 

  • Werkmeister RM, Alex A, Kaya S, Unterhuber A, Hofer B, Riedl J, Bronhagl M, Vietauer M, Schmidl D, Schmoll T (2013) Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography ultrahigh-resolution OCT measurement of tear film. Invest Ophthalmol Vis Sci 54(8):5578–5583

    Article  PubMed  Google Scholar 

  • Wykrzykowska JJ, Diletti R, Gutierrez-Chico JL, van Geuns RJ, van der Giessen WJ, Ramcharitar S, Duckers HE, Schultz C, de Feyter P, van der Ent M, Regar E, de Jaegere P, Garcia-Garcia HM, Pawar R, Gonzalo N, Ligthart J, de Schepper J, van den Berg N, Milewski K, Granada JF, Serruys PW (2012) Plaque sealing and passivation with a mechanical self-expanding low outward force nitinol vShield device for the treatment of IVUS and OCT-derived thin cap fibroatheromas (TCFAs) in native coronary arteries: report of the pilot study vShield evaluated at cardiac hospital in Rotterdam for investigation and treatment of TCFA (SECRITT). EuroIntervention 8:945–954

    Article  PubMed  Google Scholar 

  • Yin J, Liu G, Zhang J, Yu L, Mahon S, Mukai D, Brenner M, Chen Z (2009) In vivo early detection of smoke-induced airway injury using three-dimensional swept-source optical coherence tomography. J Biomed Opt 14(6):060503

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Yang H-C, Li X, Zhang J, Zhou Q, Hu C, Shung KK, Chen Z (2010) Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt 15(1):010512–010513

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, Edris A, Hoang K, Shung KK, Brenner M, Narula J, Zhou Q, Chen Z (2011) Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt 16(6):060505

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagaynova E, Gladkova N, Shakhova N, Gelikonov G, Gelikonov V (2008) Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology. J Biophotonics 1(2):114–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang S, Ji X, Zhou Q, Xing D (2014) Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. J Am Coll Cardiol 64(4):385–390

    Article  CAS  PubMed  Google Scholar 

  • Zivelonghi C, Ghione M, Kilickesmez K, Loureiro RE, Foin N, Lindsay A, de Silva R, Ribichini F, Vassanelli C, Di Mario C (2014) Intracoronary optical coherence tomography: a review of clinical applications. J Cardiovasc Med 15(7):543–553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Ma, T., Zhou, Q., Chen, Z. (2020). The Integration of IVUS and OCT. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics