Skip to main content

High-Resolution Ultrasound Imaging System

  • Chapter
  • First Online:
Multimodality Imaging

Abstract

Intravascular ultrasound (IVUS) usually uses ultrasound with center frequency of 20–60 MHz, which is noted down as high frequency ultrasound (Sun et al. in Ultrasound Med Biol 34(1):31–39, 2008; Silverman et al. in Ophthalmology 114(4):816–822, 2007), ultrasound biomicroscopy (Vogt and Ermert in IEEE Trans Ultrason Ferroelectr Freq Control 54(8):1551–1559, 2007; Foster et al. in Ultrasound Med Biol 26(1):1–27, 2000) or micro-ultrasound (Stuart Foster et al. in Interface Focus 1:576–601, 2011; Foster et al. in Ultrasound Med Biol 35(10): 1700–1708, 2009) in ultrasound society. Since the center frequency of ultrasound is higher than traditional ultrasound (2–15 MHz) for high-resolution imaging, the system design is different from the traditional scheme. Separate commercial modules with high performance are usually chosen for research application (Sun et al. in IEEE Trans Biomed Eng 55(8):2039–2049, 2008) regardless of their high cost and large size. It would provide a platform for concept verification due to their fast implementations. But for industry, the system would usually consider the cost and integration. Therefore, the design of the electric system should be easy to manufacture and mass produce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown JA, Lockwood GR (2002) A low-cost, high-performance pulse generator for ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 49(6):848–851

    Article  Google Scholar 

  • Brown JA, Lockwood GR (2005) A digital beamformer for high-frequency annular arrays. IEEE Trans Ultrason Ferroelectr Freq Control 52(8):1262–1269

    Article  PubMed  Google Scholar 

  • Chang JH, Yen JT, Kirk Shung K (2008) High-speed digital scan converter for high-frequency ultrasound sector scanners. Ultrasonics 48(5):444–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H, Li X, Lau S-T, Hu C, Zhou Q, Shung KK (2011) Development of integrated preamplifier for high-frequency ultrasonic transducers and low-power handheld receiver. IEEE Trans Ultrason Ferroelect Freq Control 58(12):2646–2658

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H, Kim MG, Cummins TM, Hwang JY, Shung KK (2014a) Power MOSFET-diode-based limiter for high-frequency ultrasound systems. Ultrason Imaging 36(4):317–330

    Article  PubMed  Google Scholar 

  • Choi H, Yang HC, Shung KK (2014) Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems. Ultrasonics 54(3):754–758

    Article  PubMed  Google Scholar 

  • Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Foster FS, Zhang MY, Zhou YQ, Liu G, Mehi J, Cherin E, Harasiewicz KA, Starkoski BG, Zan L, Knapik DA, Adamson SL (2002) A new ultrasound instrument for In vivo microimaging of mice. Ultrasound Med Biol 28(9):1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Foster FS, Mehi J, Lukacs M, Hirson D, White C, Chaggares C, Needles A (2009) A new 15–50 MHz array-based micro-ultrasound scanner for preclinical imaging. Ultrasound Med Biol 35(10):1700–1708

    Article  PubMed  Google Scholar 

  • Hu C, Xu X, Cannata JM, Yen JT, Shung KK (2006) Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers. IEEE Trans Ultrason Ferroelectr Freq Control 53(2):317–323

    Article  PubMed  Google Scholar 

  • Ketterling JA, Ramachandran S, Aristizabal O (2006) Operational verification of a 40-MHz annular array transducer. IEEE Trans Ultrason Ferroelectr Freq Control 53(3):623–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Lediju MA, Trahey GE, Byram BC, Dahl JJ (2011) Short-lag spatial coherence of backscattered echoes: imaging characteristics. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1377–1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Levesque P, Sawan M (2009) Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor. IEEE Trans Ultrason Ferroelectr Freq Control 56(8):1654–1665

    Article  PubMed  Google Scholar 

  • Li X, Ma T, Tian J, Han P, Zhou Q, Shung KK (2014) Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(7):1171–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Martin KH, Li Y, Dayton PA, Shung KK, Zhou Q, Jiang X (2015a) Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys Med Biol 60(9):3441–3457

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Yu M, Li J, Munding CE, Chen Z, Fei C, Shung KK, Zhou Q (2015b) Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans Ultrason Ferroelectr Freq Control 62(3):97–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Madsen EL, Frank GR, McCormick MM, Deaner ME, Stiles TA (2010) Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners. IEEE Trans Ultrason Ferroelectr Freq Control 57(10):2284–2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamou J, Aristizábal O, Silverman RH, Ketterling JA, Turnbull DH (2009) High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging. Ultrasound Med Biol 35(7):1198–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu W, Chen Y, Li X, Yu Y, Cheng WF, Tsang FK, Zhou Q, Shung KK, Dai J, Sun L (2012a) An open system for intravascular ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 59(10):2201–2209

    PubMed  PubMed Central  Google Scholar 

  • Qiu W, Yu Y, Tsang FK, Sun L (2012b) A multi-functional, reconfigurable pulse generator for high frequency ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 59(7):1432–1442

    Article  PubMed  Google Scholar 

  • Qiu W, Yu Y, Tsang FK, Sun L (2012c) An FPGA based open platform for ultrasound biomicroscopy. IEEE Trans Ultrason Ferroelectr Freq Control 59(7):1558–1567

    Article  PubMed  Google Scholar 

  • Qiu W, Yu Y, Chabok HR, Liu C, Tsang FK, Zhou Q, Shung KK, Zheng H, Sun L (2013a) A flexible annular array imaging platform for micro-ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 60(1):178–186

    PubMed  PubMed Central  Google Scholar 

  • Qiu W, Yu Y, Tsang FK, Zheng H, Sun L (2013b) A novel modulated excitation imaging system for micro-ultrasound. IEEE Trans Biomed Eng 60(7):1884–1890

    Article  PubMed  Google Scholar 

  • Qiu W, Wang X, Chen Y, Fu Q, Su M, Zhang L, Xia J, Dai J, Zhang Y, Zheng H (2017) Modulated excitation imaging system for intravascular ultrasound. IEEE Trans Biomed Eng 64(8):1935–1942

    Article  PubMed  Google Scholar 

  • Qiu W, Xia J, Shi Y, Mu P, Wang X, Gao M, Wang C, Xiao Y, Yang G, Liu J, Sun L, Zheng H (2018) A delayed-excitation data acquisition method for high-frequency ultrasound imaging. IEEE Trans Biomed Eng 65(1):15–20

    Article  PubMed  Google Scholar 

  • Römer TJ, Brennan JF III, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, van der Steen AF, Bom NA, Bruschke AV (2000) Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 20(2):478–483

    Article  PubMed  Google Scholar 

  • Silverman RH, Ketterling JA, Coleman DJ (2007) High-frequency ultrasonic imaging of the anterior segment using an annular array transducer. Ophthalmology 114(4):816–822

    Article  PubMed  Google Scholar 

  • Stuart Foster F, Hossack J, Lee Adamson S (2011) Micro-ultrasound for preclinical imaging. Interface Focus 1:576–601

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Lien C, Xu X, Shung KK (2008a) In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45–75 MHz). Ultrasound Med Biol 34(1):31–39

    Article  CAS  Google Scholar 

  • Sun L, Xu X, Richard WD, Feng C, Johnson JA, Shung KK (2008b) A high-frame rate duplex ultrasound biomicroscopy for small animal imaging in vivo. IEEE Trans Biomed Eng 55(8):2039–2049

    Google Scholar 

  • Vogt M, Ermert H (2007) In vivo ultrasound biomicroscopy of skin: spectral system characteristics and inverse filtering optimization. IEEE Trans Ultrason Ferroelectr Freq Control 54(8):1551–1559

    Article  PubMed  Google Scholar 

  • Xu X, Yen JT, Shung KK (2007) A low-cost bipolar pulse generator for high frequency ultrasound applications. IEEE Trans Ultrason Ferroelectr Freq Control 54(2):443–447

    Article  Google Scholar 

  • Xu X, Sun L, Cannata JM, Yen JT, Shung KK (2008) High-frequency ultrasound doppler system for biomedical applications with a 30-MHz linear array. Ultrasound Med Biol 34(4):638–646

    Article  PubMed  Google Scholar 

  • Zhang L, Xu X, Hu C, Sun L, Yen JT, Cannata JM, Shung KK (2010) A high-frequency, high frame rate duplex ultrasound linear array imaging system for small animal imaging. IEEE Trans Ultrason Ferroelectr Freq Control 57(7):1548–1557

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Xu X, Gottlieb EJ, Sun L, Cannata JM, Ameri H, Humayun MS, Han P, Shung KK (2007) PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application. IEEE Trans Ultrason Ferroelectr Freq Control 54(3):668–675

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibao Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, W., Zheng, H. (2020). High-Resolution Ultrasound Imaging System. In: Zhou, Q., Chen, Z. (eds) Multimodality Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-6307-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6307-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6306-0

  • Online ISBN: 978-981-10-6307-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics