Cloud Point Extraction

  • Sourav Mondal
  • Mihir Kumar Purkait
  • Sirshendu De
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Phase separation of a surfactant-loaded solution happens beyond a certain critical thermodynamic state (known as the cloud point), separating the hydrophobic-rich phase in a nonpolar microenvironment from the aqueous supernatant. The dye molecules are bounded to the surfactant and subsequently separated by changing the environmental factor (temperature is commonly altered in cloud point extraction) beyond the cloud point. This is a popular extraction method in bioseparations but is also applicable for purification of dye solution. The chapter discusses the effect of the various operating conditions and different surfactants on extracting clear water from the dye solution with this technology.


Cloud point extraction Congo red Eosin dye Chrysoidine Surfactant recovery 


  1. Casero I, Sicilia D, Rubio S, Perez-Bendito D (1999) An acid induced phase cloud point separation approach using anionic surfactants for extraction and preconcentration of organic compounds. Anal Chem 71:4519–4526CrossRefGoogle Scholar
  2. Clint JH (1992) Surfactant aggregation. Blackie, Glasgow, p 154CrossRefGoogle Scholar
  3. Fernandez AE, Sosa-Ferrera Z, Santana-Rod- riguez JJ (1998) Determination of polychlorinated biphenyls by liquid chromatography following cloud-point extraction. Anal Chim Acta 358:145–155Google Scholar
  4. Ferrer R, Beltran JL, Guiteras J (1996) Use of cloud point extraction methodology for the determination of PAHs priority pollutants in water samples by high performance liquid chromatography with fluorescence detection and wavelength programming. Anal Chim Acta 330:199–206CrossRefGoogle Scholar
  5. Garcia AL, Gonzalez EB, Alonso JG, Sanz-Medel A (1992) Potential of micelle-mediate procedures in the sample preparation steps for the determination of polynuclear aromatic hydrocarbons in waters. Anal Chim Acta 264:241–248Google Scholar
  6. Heegaard NH, Jakobsen DR, Klattschou D (1997) Purification of wegener’s granulomatosis autoantigen, proleinase 3, from neutrophils by triton X-114 extraction of azurophilic granules. Anal Bio- Chem 253:259–262Google Scholar
  7. Hiemenz PC, Rajagopalan RH (1997) Principles of colloid and surface chemistry. Marcel Dekker, New York, p 377CrossRefGoogle Scholar
  8. Inoue T, Ohmura H, Murata D (2003) Cloud point temperature of polyoxyethylene-type nonionic surfactants and their mixtures. J Colloid Interf Sci 258:374–382CrossRefGoogle Scholar
  9. Kimchuwanit W, Osuwan S, Scamehorn JF, Harwell JH, Haller KJ (2000) Use of a micellar-rich Coacervate phase to extract Trichloroethylene from water. Sep Sci Technol 35:1991–2002CrossRefGoogle Scholar
  10. Lindman B, Wennerstrom H (1991) Nonionic micelles grow with increasing temperature. J Phys Chem 95:6053–6054CrossRefGoogle Scholar
  11. Liu CL, Nikas YJ, Blankschtein D (1996) Novel bioseparations using two-phase aqueous micellar systems. Biotechnol Bioeng 52:185–192CrossRefGoogle Scholar
  12. Namasivayam C, Kavitha D (2002) Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith and agricultural solid waste. Dyes Pigments 54:47–58CrossRefGoogle Scholar
  13. Pinto CG, Perez-Pavon JL, Moreno-Cordero B (1994) Cloud point preconcentration and high performance liquid chromatography determination of polycyclic aromatic hydrocarbons with fluorescence detection. Anal Chem 66:874–881Google Scholar
  14. Purkait MK, Vijay SS, DasGupta S, De S (2004) Separation of congo red by surfactant mediated cloud point extraction. Dyes Pigments 63:151–159CrossRefGoogle Scholar
  15. Purkait MK, Banerjee S, Mewara S, DasGupta S, De S (2005) Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant. Water Res 39:3885–3890CrossRefGoogle Scholar
  16. Purkait MK, Banerjee S, DasGupta S, De S (2006) Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. J Hazard Mater 137:827–835CrossRefGoogle Scholar
  17. Qiao L, Easteal AJ (1998) The interaction between triton X series surfactants and poly (ethylene glycol) in aqueous solutions. Colloid Polym Sci 276:313–320CrossRefGoogle Scholar
  18. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, New YorkCrossRefGoogle Scholar
  19. Saitoh T, Hinze WL (1995) Use of surfactant mediated phase separation (cloud point extraction) with affinity ligands for the extraction of hydrophilic proteins. Talanta 42:119–127CrossRefGoogle Scholar
  20. Silva MAM, Frescura VLA, Aguilera FJN, Curtius AJ (1998) Determination of Ag and Au in geological samples by flame atomic absorption spectrometry after cloud point extraction. J Anal At Spectrom 13:1369–1373CrossRefGoogle Scholar
  21. Sirimanne SR, Patterson DG, Ma L, Justice JB (1998) Application of cloud point extraction reverse phase high performance liquid chromatography: a preliminary study of the extraction and quantification of vitamins A and E in human serum and whole blood. J Chromatogr B 716:129–137CrossRefGoogle Scholar
  22. Toerne K, Jackson R, Wandruska R (2003) POE chain length selectivity in the clouding of a triton surfactant. J Colloid Interf Sci 257:412–414CrossRefGoogle Scholar
  23. Wang Z, Zhao F, Li D (2003) Determination of solubilization of phenol at coacervate phase of cloud point extraction. Colloids Surf A 216:207–214CrossRefGoogle Scholar
  24. Watanabe H, Tanaka H (1978) A nonionic surfactant as new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-napthol. Talanta 25:585–589CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sourav Mondal
    • 1
  • Mihir Kumar Purkait
    • 2
  • Sirshendu De
    • 3
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations