Advertisement

Micellar-Enhanced Ultrafiltration (MEUF)

  • Sourav Mondal
  • Mihir Kumar Purkait
  • Sirshendu De
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Typically, the micelles are charged globular particles formed due to agglomeration of surfactant molecules when present above a critical concentration in water. Due to the charge interactions, micelles act as excellent binding agent to the dye molecules, thus solubilizing it. Even in case of uncharged dyes, nonionic surfactant micelles can solubilize it inside the micelle core. Once the low molecular weight dyes are solubilized by the micelles, the micelle-dye complex can be effectively separated by an open membrane (large pore size, large molecular weight cutoff), thus producing high throughput of clean water per unit pressure drop. This chapter deals with various types of dyes and surfactant combination in different membrane separation systems, analyzing its performance and relative separation efficiencies.

Keywords

Micellar-enhanced ultrafiltration Micelle Ultrafiltration Gel layer Surfactant 

References

  1. Adamczak H, Materna K, Urban’ski R, Szymanowski J (1999) Ultrafiltration of micellar solutions containing phenols. J Colloid Interf Sci 218:359–368CrossRefGoogle Scholar
  2. Akita S, Yang L, Takeuchi H (1997) Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant. J Membr Sci 133:189–194CrossRefGoogle Scholar
  3. Akita S, Sastillo LP, Nii S, Takahashi K, Takeuchi H (1999) Separation of Co(II)/Ni(II) via micellar enhanced ultrafiltration using organo phosphorous acid extractant solubilized by nonionic surfactant. J Membr Sci 162:111–117CrossRefGoogle Scholar
  4. Alesson FIT, Urbanski R, Szymanowsk J (2001a) Evolution of resistance to permeation during micellar enhanced ultrafiltration of phenol and 4-nitro phenol. Colloids Surf A Physicochem Eng Asp 178:71–77Google Scholar
  5. Alesson FIT, Adamczak H, Szymanowski J (2001b) Micellar-enhanced ultrafiltration of phenol by means of oxyethylated fatty acid methyl esters. J Membr Sci 192(1):155–163Google Scholar
  6. Armstrong DW (1985) Micelles in separation: a practical and theoretical review. Sep Purif Method 14:213–304CrossRefGoogle Scholar
  7. Attwood D, Florence AT (1983) Surfactant systems: their chemistry, pharmacy and biology. Chapman and Hall, LondonCrossRefGoogle Scholar
  8. Baek K, Yang JW (2004) Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. J Hazard Mater B108:119–123CrossRefGoogle Scholar
  9. Baek K, Kim BK, Yang JW (2003a) Application of micellar-enhanced ultrafiltration for nutrients removal. Desalination 156:137–144CrossRefGoogle Scholar
  10. Baek K, Lee HH, Yang JW (2003b) Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate. Desalination 158:157–166CrossRefGoogle Scholar
  11. Boerlage SFE, Kennedy MD, Bonne MAC, Galjaard G, Schippers JC (1997) Workshop on membranes in drinking water production-technical innovation and health aspects. L’Aquila, ItalyGoogle Scholar
  12. Boethling RS (1984) Environmental fate and toxicity in wastewater treatment of quaternary ammonium surfactants. EPA, Washington, DCGoogle Scholar
  13. Channarong B, Lee SH, Bade R, Shipin OV (2010) Simultaneous removal of nickel and zinc from aqueous solution by micellar-enhanced ultrafiltration and activated carbon fiber hybrid process. Desalination 262:221–227CrossRefGoogle Scholar
  14. Clint JH (1992) Surfactant aggregation. Blackie, GlasgowCrossRefGoogle Scholar
  15. Dasan DT, Ginn ME, Shah DO (eds) (1988) Surfactants in chemical/process engineering. Surfactant science series, vol 28. Marcel Dekker, Inc., New YorkGoogle Scholar
  16. De S, Bhattacharya PK (1997) Modeling of ultrafiltration process for a two component aqueous solution of low and high (gel-forming) molecular weight solutes. J Membr Sci 136:57–69CrossRefGoogle Scholar
  17. De S, Mondal S (2012) Micellar enhanced ultrafiltration: fundamentals and applications. Taylor and Francis, Boca RatonGoogle Scholar
  18. De S, Dias JM, Bhattacharya PK (1997) Short and long term flux decline analysis in ultrafiltration. Chem Eng Comm 159:67–89CrossRefGoogle Scholar
  19. Dunn RO Jr, Scamehorn JF, Christian SD (1985) Use of micellar-enhanced ultrafiltration to remove dissolved organics from aqueous stream. Sep Sci Technol 20:257–284CrossRefGoogle Scholar
  20. Dunn RO Jr, Scamehorn JF, Christian SD (1987) Concentration polarization effects in the use of micellar-enhanced ultrafiltration to remove dissolved organic pollutants. Sep Sci Technol 22:763–789CrossRefGoogle Scholar
  21. Dunn RO Jr, Scamehorn JF, Christian SD (1989) Simultaneous removal of dissolved organics and divalent metal cations from water using micellar-enhanced ultrafiltration. Colloids Surfaces 35:49–56CrossRefGoogle Scholar
  22. Elimelech M, Bhattacharjee S (1998) A novel approach for modeling concentration polarization in cross flow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. J Membr Sci 145:223–241CrossRefGoogle Scholar
  23. Elworthy PH, Florence AT, MacFarlane CB (1968) Solubilization by surface active agents and its application in chemistry and biological sciences. Chapman and Hall, LondonGoogle Scholar
  24. Fendler JH, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Academic Press, New YorkGoogle Scholar
  25. Geankoplis CJ (1997) Transport processes and unit operations. Prentice Hall of India, New DelhiGoogle Scholar
  26. Ghezzi L, Robinson BH, Secco F, Tiné MR, Venturini M (2008) Removal and recovery of palladium(II) ions from water using micellar-enhanced ultrafiltration with a cationic surfactant. Colloids Surf A Physicochem Eng Asp 329:12–17CrossRefGoogle Scholar
  27. Gibbs LL, Scamehorn JF, Christian SD (1987) Removal of n-alcohols from aqueous streams using micellar-enhanced ultrafiltration. J Membr Sci 30:67–74CrossRefGoogle Scholar
  28. Gillberg G (1984) Practical use of microemulsions. In: Lissant KJ (ed) Emulsion and emulsion technology-part III. Surfactant science series, vol 6. Marcel Dekker, New York, Ch. 1, 1984Google Scholar
  29. Gillberg G, Friberg S (1978) Microemulsion as diesel fuels. In: Zung JT (ed) Evaporation-combustion of fuels. Advances in chemistry series, vol 166. American Chemical Society, WashingtonGoogle Scholar
  30. Gzara L, Dhahbi M (2001) Removal of chromate anions by micellar enhanced ultrafiltration using cationic surfactants. Desalination 137:241–250CrossRefGoogle Scholar
  31. Jadhav SR, Verma N, Sharma A, Bhattacharya PK (2001) Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline. Sep Purif Technol 24:541–557CrossRefGoogle Scholar
  32. Juang RS, Xu YY, Chen CL (2003) Separation and removal of metal ions from dilute solutions using micellar enhanced ultrafiltration. J Membr Sci 218:257–267CrossRefGoogle Scholar
  33. Karate VD, Marathe KV (2008) Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J Hazard Mater 157:464–471CrossRefGoogle Scholar
  34. Karode SK (2000) A method for prediction of the gel concentration in macromolecular ultrafiltration. J Membr Sci 171:131–139CrossRefGoogle Scholar
  35. Ke X, Guang-ming Z, Jin-hui H et al (2007) Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids Surf A: Physicochem Eng Asp 294:140–146CrossRefGoogle Scholar
  36. Kishihara S, Fujii S, Komoto M (1989) Clarification of technical sugar solution through dynamic layer formed on porous ceramic membrane. J Membr Sci 41:103–114CrossRefGoogle Scholar
  37. Lipe KM, Sabatini DA, Hasegawa MA, Harwell JH (1996) Micellar-enhanced ultrafiltration and air stripping for surfactant contaminant separation and surfactant reuse. Ground Water Monit Remidiat 16:85–92CrossRefGoogle Scholar
  38. Liu CK, Li CW (2005) Combined electrolysis and micellar enhanced ultrafiltration (MEUF) process for metal removal. Sep Purif Technol 43:25–31CrossRefGoogle Scholar
  39. Madsen RF (1973) Application of ultrafiltration and reverse osmosis to cane juice. Int Sugar J 75:163–167Google Scholar
  40. Markels JH, Lynn S, Radke CJ (1994) Micellar ultrafiltration in an unstirred batch cell at constant flux. J Membr Sci 86:241–261CrossRefGoogle Scholar
  41. Mukherjee P (1979) Solubilization in aqueous Micellar systems. In: Mittal KL (ed) Solution chemistry of surfactants. Plenum Press, New York, pp 153–174CrossRefGoogle Scholar
  42. Purkait MK, DasGupta S, De S (2003) Removal of dye from wastewater using micellar enhanced ultrafiltration and recovery of surfactant. Sep Purif Technol 37:81–92CrossRefGoogle Scholar
  43. Purkait MK, DasGupta S, De S (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J Colloid Interface Sci 270:496–506CrossRefGoogle Scholar
  44. Purkait MK, DasGupta S, De S (2005a) Micellar enhanced ultrafiltration of phenolic derivatives from their mixtures. J Colloid Interf Sci 285:395–402CrossRefGoogle Scholar
  45. Purkait MK, DasGupta S, De S (2005b) Simultaneous separation of two oxyanions from their mixture using micellar enhanced ultrafiltration. Sep Sci Technol 40:1439–1460CrossRefGoogle Scholar
  46. Rahmanian B, Pakizeh M, Maskooki A (2010) Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane. J Hazard Mater 184:261–267CrossRefGoogle Scholar
  47. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, HobokenCrossRefGoogle Scholar
  48. Sabaté J, Pujolà M, Llorens J (2002) Comparison of polysulfone and ceramic membranes for the separation of phenol in micellar-enhanced ultrafiltration. J Colloid Interf Sci 246:157–163CrossRefGoogle Scholar
  49. Saraf YP, Bhagwat SS (1995) Interfacial effects in the solubilization of o-, p-substituted phenols. Sep Technol 5:207–212CrossRefGoogle Scholar
  50. Scamehorn JF, Harwell JH (eds) (1989) Surfactant based separation processes. Surfactant science series, vol 33. Marcel Dekker, New YorkGoogle Scholar
  51. Song L (1998) Flux decline in cross flow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. J Membr Sci 139:183–200CrossRefGoogle Scholar
  52. Sreenivas K, Ragesh P, DasGupta S, De S (2002) Modeling of cross-flow osmotic pressure controlled membrane separation processes under turbulent flow conditions. J Membr Sci 201:203–212CrossRefGoogle Scholar
  53. Syamal M, De S, Bhattacharya PK (1997) Phenol solubilization by cetyl pyridinium chloride micelles in micellar-enhanced ultrafiltration. J Membr Sci 137:99–107CrossRefGoogle Scholar
  54. Tung CC, Yang YM, Chang CH, Maa JR (2002) Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Manag 22:695–701CrossRefGoogle Scholar
  55. Wiesner MR, Chellam S (1999) The promise of membrane technology. Environ Sci Technol 33:360A–366ACrossRefGoogle Scholar
  56. Wijmans JG, Nakao S, Smolders CA (1984) Flux limitations in ultrafiltration: osmotic pressure model and gel layer model. J Membr Sci 20:115–124CrossRefGoogle Scholar
  57. Witek A, Koltuniewicz A, Kurczewski B, Radziejowska M, Hatalski M (2006) Simultaneous removal of phenols and Cr3+ using micellar-enhanced ultrafiltration process. Desalination 191:111–116CrossRefGoogle Scholar
  58. Zihao W, Yuanli J, Jufu F (1996) The entrainment swelling of emulsion during lactic acid extraction by LSMs. J Membr Sci 109:25–34CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sourav Mondal
    • 1
  • Mihir Kumar Purkait
    • 2
  • Sirshendu De
    • 3
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations