Skip to main content

Micellar-Enhanced Ultrafiltration (MEUF)

  • Chapter
  • First Online:
Advances in Dye Removal Technologies

Abstract

Typically, the micelles are charged globular particles formed due to agglomeration of surfactant molecules when present above a critical concentration in water. Due to the charge interactions, micelles act as excellent binding agent to the dye molecules, thus solubilizing it. Even in case of uncharged dyes, nonionic surfactant micelles can solubilize it inside the micelle core. Once the low molecular weight dyes are solubilized by the micelles, the micelle-dye complex can be effectively separated by an open membrane (large pore size, large molecular weight cutoff), thus producing high throughput of clean water per unit pressure drop. This chapter deals with various types of dyes and surfactant combination in different membrane separation systems, analyzing its performance and relative separation efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczak H, Materna K, Urban’ski R, Szymanowski J (1999) Ultrafiltration of micellar solutions containing phenols. J Colloid Interf Sci 218:359–368

    Article  CAS  Google Scholar 

  • Akita S, Yang L, Takeuchi H (1997) Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant. J Membr Sci 133:189–194

    Article  CAS  Google Scholar 

  • Akita S, Sastillo LP, Nii S, Takahashi K, Takeuchi H (1999) Separation of Co(II)/Ni(II) via micellar enhanced ultrafiltration using organo phosphorous acid extractant solubilized by nonionic surfactant. J Membr Sci 162:111–117

    Article  CAS  Google Scholar 

  • Alesson FIT, Urbanski R, Szymanowsk J (2001a) Evolution of resistance to permeation during micellar enhanced ultrafiltration of phenol and 4-nitro phenol. Colloids Surf A Physicochem Eng Asp 178:71–77

    Google Scholar 

  • Alesson FIT, Adamczak H, Szymanowski J (2001b) Micellar-enhanced ultrafiltration of phenol by means of oxyethylated fatty acid methyl esters. J Membr Sci 192(1):155–163

    Google Scholar 

  • Armstrong DW (1985) Micelles in separation: a practical and theoretical review. Sep Purif Method 14:213–304

    Article  CAS  Google Scholar 

  • Attwood D, Florence AT (1983) Surfactant systems: their chemistry, pharmacy and biology. Chapman and Hall, London

    Book  Google Scholar 

  • Baek K, Yang JW (2004) Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. J Hazard Mater B108:119–123

    Article  Google Scholar 

  • Baek K, Kim BK, Yang JW (2003a) Application of micellar-enhanced ultrafiltration for nutrients removal. Desalination 156:137–144

    Article  CAS  Google Scholar 

  • Baek K, Lee HH, Yang JW (2003b) Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate. Desalination 158:157–166

    Article  CAS  Google Scholar 

  • Boerlage SFE, Kennedy MD, Bonne MAC, Galjaard G, Schippers JC (1997) Workshop on membranes in drinking water production-technical innovation and health aspects. L’Aquila, Italy

    Google Scholar 

  • Boethling RS (1984) Environmental fate and toxicity in wastewater treatment of quaternary ammonium surfactants. EPA, Washington, DC

    Google Scholar 

  • Channarong B, Lee SH, Bade R, Shipin OV (2010) Simultaneous removal of nickel and zinc from aqueous solution by micellar-enhanced ultrafiltration and activated carbon fiber hybrid process. Desalination 262:221–227

    Article  CAS  Google Scholar 

  • Clint JH (1992) Surfactant aggregation. Blackie, Glasgow

    Book  Google Scholar 

  • Dasan DT, Ginn ME, Shah DO (eds) (1988) Surfactants in chemical/process engineering. Surfactant science series, vol 28. Marcel Dekker, Inc., New York

    Google Scholar 

  • De S, Bhattacharya PK (1997) Modeling of ultrafiltration process for a two component aqueous solution of low and high (gel-forming) molecular weight solutes. J Membr Sci 136:57–69

    Article  CAS  Google Scholar 

  • De S, Mondal S (2012) Micellar enhanced ultrafiltration: fundamentals and applications. Taylor and Francis, Boca Raton

    Google Scholar 

  • De S, Dias JM, Bhattacharya PK (1997) Short and long term flux decline analysis in ultrafiltration. Chem Eng Comm 159:67–89

    Article  CAS  Google Scholar 

  • Dunn RO Jr, Scamehorn JF, Christian SD (1985) Use of micellar-enhanced ultrafiltration to remove dissolved organics from aqueous stream. Sep Sci Technol 20:257–284

    Article  CAS  Google Scholar 

  • Dunn RO Jr, Scamehorn JF, Christian SD (1987) Concentration polarization effects in the use of micellar-enhanced ultrafiltration to remove dissolved organic pollutants. Sep Sci Technol 22:763–789

    Article  CAS  Google Scholar 

  • Dunn RO Jr, Scamehorn JF, Christian SD (1989) Simultaneous removal of dissolved organics and divalent metal cations from water using micellar-enhanced ultrafiltration. Colloids Surfaces 35:49–56

    Article  CAS  Google Scholar 

  • Elimelech M, Bhattacharjee S (1998) A novel approach for modeling concentration polarization in cross flow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. J Membr Sci 145:223–241

    Article  Google Scholar 

  • Elworthy PH, Florence AT, MacFarlane CB (1968) Solubilization by surface active agents and its application in chemistry and biological sciences. Chapman and Hall, London

    Google Scholar 

  • Fendler JH, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Academic Press, New York

    Google Scholar 

  • Geankoplis CJ (1997) Transport processes and unit operations. Prentice Hall of India, New Delhi

    Google Scholar 

  • Ghezzi L, Robinson BH, Secco F, Tiné MR, Venturini M (2008) Removal and recovery of palladium(II) ions from water using micellar-enhanced ultrafiltration with a cationic surfactant. Colloids Surf A Physicochem Eng Asp 329:12–17

    Article  CAS  Google Scholar 

  • Gibbs LL, Scamehorn JF, Christian SD (1987) Removal of n-alcohols from aqueous streams using micellar-enhanced ultrafiltration. J Membr Sci 30:67–74

    Article  CAS  Google Scholar 

  • Gillberg G (1984) Practical use of microemulsions. In: Lissant KJ (ed) Emulsion and emulsion technology-part III. Surfactant science series, vol 6. Marcel Dekker, New York, Ch. 1, 1984

    Google Scholar 

  • Gillberg G, Friberg S (1978) Microemulsion as diesel fuels. In: Zung JT (ed) Evaporation-combustion of fuels. Advances in chemistry series, vol 166. American Chemical Society, Washington

    Google Scholar 

  • Gzara L, Dhahbi M (2001) Removal of chromate anions by micellar enhanced ultrafiltration using cationic surfactants. Desalination 137:241–250

    Article  CAS  Google Scholar 

  • Jadhav SR, Verma N, Sharma A, Bhattacharya PK (2001) Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline. Sep Purif Technol 24:541–557

    Article  CAS  Google Scholar 

  • Juang RS, Xu YY, Chen CL (2003) Separation and removal of metal ions from dilute solutions using micellar enhanced ultrafiltration. J Membr Sci 218:257–267

    Article  CAS  Google Scholar 

  • Karate VD, Marathe KV (2008) Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J Hazard Mater 157:464–471

    Article  CAS  Google Scholar 

  • Karode SK (2000) A method for prediction of the gel concentration in macromolecular ultrafiltration. J Membr Sci 171:131–139

    Article  CAS  Google Scholar 

  • Ke X, Guang-ming Z, Jin-hui H et al (2007) Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids Surf A: Physicochem Eng Asp 294:140–146

    Article  Google Scholar 

  • Kishihara S, Fujii S, Komoto M (1989) Clarification of technical sugar solution through dynamic layer formed on porous ceramic membrane. J Membr Sci 41:103–114

    Article  CAS  Google Scholar 

  • Lipe KM, Sabatini DA, Hasegawa MA, Harwell JH (1996) Micellar-enhanced ultrafiltration and air stripping for surfactant contaminant separation and surfactant reuse. Ground Water Monit Remidiat 16:85–92

    Article  CAS  Google Scholar 

  • Liu CK, Li CW (2005) Combined electrolysis and micellar enhanced ultrafiltration (MEUF) process for metal removal. Sep Purif Technol 43:25–31

    Article  CAS  Google Scholar 

  • Madsen RF (1973) Application of ultrafiltration and reverse osmosis to cane juice. Int Sugar J 75:163–167

    CAS  Google Scholar 

  • Markels JH, Lynn S, Radke CJ (1994) Micellar ultrafiltration in an unstirred batch cell at constant flux. J Membr Sci 86:241–261

    Article  CAS  Google Scholar 

  • Mukherjee P (1979) Solubilization in aqueous Micellar systems. In: Mittal KL (ed) Solution chemistry of surfactants. Plenum Press, New York, pp 153–174

    Chapter  Google Scholar 

  • Purkait MK, DasGupta S, De S (2003) Removal of dye from wastewater using micellar enhanced ultrafiltration and recovery of surfactant. Sep Purif Technol 37:81–92

    Article  Google Scholar 

  • Purkait MK, DasGupta S, De S (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J Colloid Interface Sci 270:496–506

    Article  CAS  Google Scholar 

  • Purkait MK, DasGupta S, De S (2005a) Micellar enhanced ultrafiltration of phenolic derivatives from their mixtures. J Colloid Interf Sci 285:395–402

    Article  CAS  Google Scholar 

  • Purkait MK, DasGupta S, De S (2005b) Simultaneous separation of two oxyanions from their mixture using micellar enhanced ultrafiltration. Sep Sci Technol 40:1439–1460

    Article  CAS  Google Scholar 

  • Rahmanian B, Pakizeh M, Maskooki A (2010) Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane. J Hazard Mater 184:261–267

    Article  CAS  Google Scholar 

  • Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, Hoboken

    Book  Google Scholar 

  • Sabaté J, Pujolà M, Llorens J (2002) Comparison of polysulfone and ceramic membranes for the separation of phenol in micellar-enhanced ultrafiltration. J Colloid Interf Sci 246:157–163

    Article  Google Scholar 

  • Saraf YP, Bhagwat SS (1995) Interfacial effects in the solubilization of o-, p-substituted phenols. Sep Technol 5:207–212

    Article  CAS  Google Scholar 

  • Scamehorn JF, Harwell JH (eds) (1989) Surfactant based separation processes. Surfactant science series, vol 33. Marcel Dekker, New York

    Google Scholar 

  • Song L (1998) Flux decline in cross flow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. J Membr Sci 139:183–200

    Article  CAS  Google Scholar 

  • Sreenivas K, Ragesh P, DasGupta S, De S (2002) Modeling of cross-flow osmotic pressure controlled membrane separation processes under turbulent flow conditions. J Membr Sci 201:203–212

    Article  CAS  Google Scholar 

  • Syamal M, De S, Bhattacharya PK (1997) Phenol solubilization by cetyl pyridinium chloride micelles in micellar-enhanced ultrafiltration. J Membr Sci 137:99–107

    Article  CAS  Google Scholar 

  • Tung CC, Yang YM, Chang CH, Maa JR (2002) Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Manag 22:695–701

    Article  CAS  Google Scholar 

  • Wiesner MR, Chellam S (1999) The promise of membrane technology. Environ Sci Technol 33:360A–366A

    Article  CAS  Google Scholar 

  • Wijmans JG, Nakao S, Smolders CA (1984) Flux limitations in ultrafiltration: osmotic pressure model and gel layer model. J Membr Sci 20:115–124

    Article  CAS  Google Scholar 

  • Witek A, Koltuniewicz A, Kurczewski B, Radziejowska M, Hatalski M (2006) Simultaneous removal of phenols and Cr3+ using micellar-enhanced ultrafiltration process. Desalination 191:111–116

    Article  CAS  Google Scholar 

  • Zihao W, Yuanli J, Jufu F (1996) The entrainment swelling of emulsion during lactic acid extraction by LSMs. J Membr Sci 109:25–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Purkait, M.K., De, S. (2018). Micellar-Enhanced Ultrafiltration (MEUF). In: Advances in Dye Removal Technologies. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6293-3_7

Download citation

Publish with us

Policies and ethics