Skip to main content

Hybrid Treatment Method of Industrial Effluent

  • Chapter
  • First Online:
Advances in Dye Removal Technologies

Abstract

It can be envisaged that a series system using two technologies can be advantageous in improving the overall efficiency and performance. Two proposed configurations were studied in this chapter: (1) adsorption followed by nanofiltration and (2) advance oxidation followed by nanofiltration. Quantitative comparison of the performance of both of these hybrid methods is elaborated in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdessemed D, Nezzal G (2002) Treatment of primary effluent by coagulation- adsorption- ultrafiltration for reuse. Desalination 152:367–373

    Article  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    Article  CAS  Google Scholar 

  • Aouni A, Fersi C, Ali MBS, Dhahbi M (2009) Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J Hazard Mater 168:868–874

    Article  CAS  Google Scholar 

  • Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. J Colloid Interf Sci 288:371–376

    Article  CAS  Google Scholar 

  • Arana J, Rendón ET, Rodříyguez JMD, Melián JAH, Ďíyaz OG, Pena JP (2001) Highly concentrated phenolic wastewater treatment by the photo-Fenton reaction, mechanism study by FTIR-ATR. Chemosphere 44:1017–1023

    Article  CAS  Google Scholar 

  • Baudin I, Chevalier MR, Anselme C, Cornu S, Laine JM (1997) L'Apie and Vigneux case studies: first months of operation. Desalination 113:273–275

    Article  CAS  Google Scholar 

  • Chakraborty S, De S, Basu JK, Dasgupta S (2005) Treatment of a textile effluent: application of a combination method involving adsorption and nanofiltration. Desalination 174:73–85

    Article  CAS  Google Scholar 

  • Dhale AD, Mahajani VV (2000) Studies on treatment of disperse dye waste: membrane-wet oxidation process. Waste Manage 20:85–92

    Article  CAS  Google Scholar 

  • Ellouze E, Tahri N, Amar RB (2012) Enhancement of textile wastewater treatment process using nanofiltration. Desalination 286:16–23

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Haghighi R (2003) Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem Eng J 95:163–169

    Article  CAS  Google Scholar 

  • Kang SF, Liao CH, Chen MC (2002) Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46:923–928

    Article  CAS  Google Scholar 

  • Karmakar S, Mondal M, Ghosh S, Bandopadhaya S, Majumder S, De S (2015) Removal of reactive dyes using a high throughput-hybrid separation process. Desalination Wat Treat. https://doi.org/10.1080/19443994.2015.1033762

  • Kitis M, Adams CD, Daigger GT (1999) The effects of Fenton’s reagent pretreatment on the biodegradability of nonionic surfactants. Water Res 33:2561–2568

    Article  CAS  Google Scholar 

  • Kunz A, Reginatto V, Duran N (2001) Combined treatment of textile effluent using the sequence Phanerochaete chrysosporium–ozone. Chemosphere 44:281–287

    Article  CAS  Google Scholar 

  • Kuo WG (1992) Decolourising dye wastewater with Fenton’s reagent. Water Res 26:881–886

    Article  CAS  Google Scholar 

  • Lin SH, Lin CM (1993) Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res 27:1743–1748

    Article  CAS  Google Scholar 

  • Lin SH, Wang CS (2002) Treatment of high-strength phenolic wastewater by a new two-step method. J Hazard Mater B90:205–216

    Article  Google Scholar 

  • Lunar L, Sicilia D, Rubio S, Perez-Bendito D, Nickel U (2000) Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metal oxidation. Water Res 34:1791–1802

    Article  CAS  Google Scholar 

  • Meier J, Melin T, Eilers LH (2002) Nanofiltration and adsorption on powdered adsorbent as process combination for the treatment of severely contaminated wastewater. Desalination 146:361–366

    Article  CAS  Google Scholar 

  • Newcombe G, Drikas M (1997) Adsorption of NOM activated carbon: electro-static and non-electrostatic effects. Carbon 35:1239–1250

    Article  CAS  Google Scholar 

  • Newcombe G, Donati C, Drikas M, Hayes R (1996) Adsorption onto activated carbon: electrostatic and non-electrostatic interactions. Water Supply 14:129–144

    CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater B 98:33–50

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment 58:179–196

    Article  CAS  Google Scholar 

  • Pérez M, Torrades F, Dome’nech X, Peral J (2002) Fenton and photo-Fenton oxidation of textile effluents. Water Res 36:2703–2710

    Article  Google Scholar 

  • Pigmon HM, Brasquet CF, Cloiree PL (2003) Adsorption of dyes onto activated carbon cloths: approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat colored wastewaters. Sep Purif Technol 31:3–11

    Article  Google Scholar 

  • Rathi A, Rajor HK, Sharma RK (2003) Photodegradation of direct yellow-12 using UV/H2O2/Fe2+. J Hazard Mater B 102:231–241

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Rodrigues CSD, Madeira LM, Boaventura RAR (2009) Treatment of textile effluent by chemical (Fenton's reagent) and biological (sequencing batch reactor) oxidation. J Hazard Mater 172:1551–1559

    Article  CAS  Google Scholar 

  • Selcuk H (2005) Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes Pigment 64:217–222

    Article  CAS  Google Scholar 

  • Tahri N, Masmoudi G, Ellouze E, Jrad A, Drogui P, Amar RB (2012) Coupling microfiltration and nanofiltration processes for the treatment at source of dyeing-containing effluent. J Clean Prod 33:226–235

    Article  CAS  Google Scholar 

  • Weinberg HS, Glaze WH (1997) A unified approach to the analysis of polar organic by-products of oxidation in aqueous matrices. Water Res 31:1555–1572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Purkait, M.K., De, S. (2018). Hybrid Treatment Method of Industrial Effluent. In: Advances in Dye Removal Technologies. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6293-3_6

Download citation

Publish with us

Policies and ethics