Skip to main content

Adsorption of Dyes

  • Chapter
  • First Online:
Advances in Dye Removal Technologies

Abstract

Adsorption is one of the most commonly used, traditional separation technologies utilized for separation. Since it is an equilibrium-governed process, the process efficiency is excellent, but the throughput is relatively low. Nevertheless, because of its simplicity, this is one of the normally used technologies for dye removal from aqueous stream. Therefore, it is imperative to understand the modeling aspects of such adsorbent-based systems which is necessary for design and implementation of the technology. Additionally, the chapter describes the characteristics of the different commonly used adsorbents and its applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akmil-Basar C, Onal Y, Kilicer T, Eren D (2005) Adsorptions of high concentration malachite green by two activated carbons having different porous structures. J Hazard Mater 127:73–80

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochem Eng J 7:79–84

    Article  CAS  Google Scholar 

  • Aksu Z (2003) Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem 38:1437–1444

    Article  CAS  Google Scholar 

  • Aksu Z, Donmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol blue reactive dye. Chemosphere 50:1075–1083

    Article  CAS  Google Scholar 

  • Aksu Z, Tezer S (2000) Equilibrium and kinetic modelling of biosorption of Remazol black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem 36:431–439

    Article  CAS  Google Scholar 

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella Vulgaris. Process Biochem 40:1347–1361

    Article  CAS  Google Scholar 

  • Al-Degs Y, Khraisheh MAM, Allen SJ, Ahmad MN (2000) Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res 34:927–935

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manag 69:229–238

    Article  CAS  Google Scholar 

  • Allen SJ, Gan Q, Matthews R, Johnson PA (2003) Comparison of optimized isotherm models for basic dye adsorption by kudzu. Bioresour Technol 88:143–152

    Article  CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92:263–274

    Article  CAS  Google Scholar 

  • Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135:171–179

    Article  CAS  Google Scholar 

  • Asfour HM, Fadali OA, Nassar MM, EI-Geundi MS (1985) Equilibrium studies on adsorption of basic dyes on hardwood. J Chem Technol Biotechnol 35A:21–27

    CAS  Google Scholar 

  • Aygun A, Yenisoy-Karakas S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66:189–195

    Article  CAS  Google Scholar 

  • Bagane M, Guiza S (2000) Elimination d’un colorant des effluents de l’industrie textile par adsorption. Ann Chim Sci Mater 25:615–625

    Article  CAS  Google Scholar 

  • Banat F, Al-Asheh S, Al-Makhadmeh L (2003) Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem 39:193–202

    Article  CAS  Google Scholar 

  • Batzias FA, Sidiras DK (2004) Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. J Hazard Mater 114:167–174

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Sarma A (2003) Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes Pigm 57(3):211–222

    Google Scholar 

  • Bohart G, Adams EQ (1920) Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc 42:523–544

    Article  CAS  Google Scholar 

  • Bouzaida I, Rammah MB (2002) Adsorption of acid dyes on treated cotton in a continuous system. Mater Sci Eng C 21:151–155

    Article  Google Scholar 

  • Chatzopoulos D, Verma A, Irvine RL (1993) Activated carbon adsorption and desorption of toluene in the aqueous phase. AICHE J 39:2027–2041

    Article  CAS  Google Scholar 

  • Chen BN, Hui CW, McKay G (2001) Film-pore diffusion modeling and contact time optimization for the adsorption of dyestuffs on pith. Chem Eng J 84:77–94

    Article  CAS  Google Scholar 

  • Chiou MS, Li HY (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93:233–248

    Article  CAS  Google Scholar 

  • Chiou MS, Ho PY, Li HY (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60:69–84

    Article  CAS  Google Scholar 

  • Choy KKH, McKay G, Porter JF (1999) Sorption of acid dyes from effluents using activated carbon. Resour Conserv Recycl 27:57–71

    Article  Google Scholar 

  • Choy KKH, Porter JF, McKay G (2000) Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J Chem Eng Data 45:575–584

    Article  CAS  Google Scholar 

  • Chu HC, Chen KM (2002a) Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochem 37:595–600

    Article  CAS  Google Scholar 

  • Chu HC, Chen KM (2002b) Reuse of activated sludge biomass: II. The rate processes for the adsorption of basic dyes on biomass. Process Biochem 37:1129–1134

    Article  CAS  Google Scholar 

  • Clark RM (1987) Evaluating the cost and performance of field-scale granular activated carbon systems. Environ Sci Technol 21:573–580

    Article  CAS  Google Scholar 

  • Costa E, Calleja G, Marijuan L (1987) Adsorption of phenol and p-nitrophenol on activated carbon: determination of effective diffusion coefficient. Adsorp Sci Technol 4:59–77

    Article  CAS  Google Scholar 

  • Dedrick RL, Beckmann RB (1967) Kinetics of adsorption by activated carbon from dilute aqueous solution. AIChe Symp Ser 63:68–78

    CAS  Google Scholar 

  • Dhaouadi H, M’Henni F (2008) Textile mill effluent decolorization using crude dehydrated sewage sludge. Chem Eng J 138:111–119

    Article  CAS  Google Scholar 

  • Doulati Ardejani F, Badii K, Limaee NY, Shafaei SZ, Mirhabibi AR (2008) Adsorption of direct red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type. J Hazard Mater 151:730–737

    Article  CAS  Google Scholar 

  • El-Guendi MS, Ismail HM, Attyia KME (1995) Activated clay as an adsorbent for cationic dyestuffs. Adsorpt Sci Technol 12:109–117

    Article  Google Scholar 

  • Eren Z, Acar FN (2007) Equilibrium and kinetic mechanism for reactive black 5 sorption onto high lime Soma fly ash. J Hazard Mater 143:226–232

    Article  CAS  Google Scholar 

  • Espantaleon AG, Nieto JA, Fernandez M, Marsal A (2003) Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl Clay Sci 24:105–111

    Article  CAS  Google Scholar 

  • Faust SD, Aly OM (1987) Adsorption processes for water treatment. Butterworth Publishers, USA

    Google Scholar 

  • Ferrero F (2007) Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J Hazard Mater 142:144–152

    Article  CAS  Google Scholar 

  • Figueiredo SA, Boaventura RA, Loureiro JM (2000) Color removal with natural adsorbents: modeling, simulation and experimental. Sep Purif Technol 20:129–141

    Article  CAS  Google Scholar 

  • Finar IL (1973) Addison Wesley Longman ltd., organic chemistry, Vol-1: the fundamental principles

    Google Scholar 

  • Fogler HS (1997) Elements of chemical reaction engineering. Prentice Hall (India) Ltd, New Delhi

    Google Scholar 

  • Fu YZ, Viraraghavan T (2000) Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Qual Res J Can 35:95–111

    CAS  Google Scholar 

  • Fu YZ, Viraraghavan T (2001) Removal of CI acid blue 29 from an aqueous solution by Aspergillus niger. Am Assoc Text Chem Color Rev 1:36–40

    CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2002a) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247

    Article  CAS  Google Scholar 

  • Fu YZ, Viraraghavan T (2002b) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82:139–145

    Article  CAS  Google Scholar 

  • Furusawa T, Smith JM (1973) Fluid-particle and intraparticle mass transport rates in slurries. Ind Eng Chem Fundamen 12:197–203

    Article  CAS  Google Scholar 

  • Garg VK, Gupta R, Bala Yadav A, Kumar R (2003) Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol 89:121–124

    Article  CAS  Google Scholar 

  • Gercel O, Gercel HF, Koparal AS, Ogutveren UB (2008) Removal of disperse dye from aqueous solution by novel adsorbent prepared from biomass plant material. J Hazard Mater 160:668–674

    Google Scholar 

  • Goel J, Kadirvelu K, Rajagopal C, Garg VK (2005) Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies. J Hazard Mater 125:211–220

    Article  CAS  Google Scholar 

  • Gulnaz O, Kaya A, Matyar F, Arikan B (2004) Sorption of basic dyes from aqueous solution by activated sludge. J Hazard Mater 108:183–188

    Article  CAS  Google Scholar 

  • Gupta GS, Shukla SP (1996) An inexpensive adsorption technique for the treatment of carpet effluents by low cost materials. Adsorp Sci Technol 13:15–26

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low cost adsorbents for dye removal – a review. J Environ Manage 90:2313–2342

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava SK, Mohan D (1997) Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind Eng Chem Res 36:2207–2218

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Sharma M (2000) Removal of basic dyes (Rhodamine B and Methylene Blue) from aqueous solutions using bagasse fly ash. Sep Sci Technol 35:2097–2113

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304:52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Carrott R, Suhas MML (2009) Low cost adsorbents: growing approach to wastewater treatment – a review. Crit Rev Env Sci Technol 39:783–842

    Article  Google Scholar 

  • Gurses A, Karaca S, Dogar C, Bayrak R, Acikyildiz M, Yalcin M (2004) Determination of adsorptive properties of clay/water system: methylene blue sorption. J Colloid Interface Sci 269:310–314

    Article  CAS  Google Scholar 

  • Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater 135:264–273

    Article  CAS  Google Scholar 

  • Hameed BH (2009a) Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J Hazard Mater 162:344–350

    Article  CAS  Google Scholar 

  • Hameed BH (2009b) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater 161:753–759

    Article  CAS  Google Scholar 

  • Hameed BH, El-Khaiary MI (2008) Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. J Hazard Mater 154:237–244

    Article  CAS  Google Scholar 

  • Hand DW, Crittenden JE, Thacker WE (1983) User oriented batch reactor solutions to the homogeneous surface diffusion model. J Environ Eng 109:82–101

    Article  CAS  Google Scholar 

  • Hasnain Isa M, Siew Lang L, Asaari FAH, Aziz HA, Azam Ramli N, Dhas JPA (2007) Low cost removal of disperse dyes from aqueous solution using palm ash. Dyes Pigments 74:446–453

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998a) Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot 76:183–191

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998b) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Ho YS, Wase DAJ, Forster CF (1996) Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol 17:71–77

    Article  CAS  Google Scholar 

  • Ho YS, Chiang TH, Hsueh YM (2005) Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochem 40:119–124

    Article  CAS  Google Scholar 

  • Hu QH, Qiao SZ, Haghseresht F, Wilson MA, Lu GQ (2006) Adsorption study for removal of basic red dye using bentonite. Ind Eng Chem Res 45:733–738

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Jain S, Suhas (2003a) A comparative assessment of adsorbents prepared from industrial wastes for the removal of cationic dye. J Indian Chem Soc 80:267–270

    CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Suhas (2003b) A comparative study of adsorbents prepared from industrial wastes for removal of dyes. Sep Sci Technol 38:463–481

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Suhas (2003c) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater 101:31–42

    Article  CAS  Google Scholar 

  • Janos P, Buchtova H, Ryznarova M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37:4938–4944

    Article  CAS  Google Scholar 

  • Juang RS, Tseng RL, Wu FC (2001) Role of microporosity of activated carbons on their adsorption abilities for phenols and dyes. Adsorption 7:65–72

    Article  CAS  Google Scholar 

  • Juang RS, Wu FC, Tseng RL (2002) Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloids Surf A Physicochem Eng Asp 201:191–199

    Article  CAS  Google Scholar 

  • Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons – a comparative study. Dyes Pigments 51:25–40

    Article  CAS  Google Scholar 

  • Kapoor A, Yang RT, Wong C (1989) Surface diffusion. Catal Rev Sci Eng 31:129–214

    Article  CAS  Google Scholar 

  • Kargi F, Ozmihci S (2004) Biosorption performance of powdered activated sludge for removal of different dyestuffs. Enzym Microb Technol 35:267–271

    Article  CAS  Google Scholar 

  • Khan SA, Rehma R, Khan MM (1995) Adsorption of Cr(III), Cr(VI) and Ag(I) on Bentonite. Waste Manag 15:271–282

    Article  CAS  Google Scholar 

  • Khattri SD, Singh MK (1999) Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorpt Sci Technol 17:269–282

    Article  CAS  Google Scholar 

  • Khattri SD, Singh MK (2000) Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut 120:283–294

    Article  CAS  Google Scholar 

  • Komiyama H, Smith J (1974) Surface diffusion in liquid filled pores. AICHE J 20:1110–1117

    Article  CAS  Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization engineering. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Levenspiel O (1972) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  • Liapis AI, Rippin DWT (1977) A general model for the simulation of multicomponent adsorption from a finite batch. Chem Eng Sci 23:619–629

    Article  Google Scholar 

  • Lin JX, Zhan SL, Fang MH, Qian XQ, Yang H (2008) Adsorption of basic dye from aqueous solution onto fly ash. J Environ Manag 87:193–200

    Article  CAS  Google Scholar 

  • Magdy YH, Daifullah AAM (1998) Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud in two modes of operations. Waste Manag 18:219–226

    Article  CAS  Google Scholar 

  • Malik PK (2003) Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes Pigments 56:239–249

    Article  CAS  Google Scholar 

  • Malik R, Ramteke DS, Wate SR (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag 27:1129–1138

    Article  CAS  Google Scholar 

  • Manju GN, Raji C, Anirudhan TS (1998) Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res 32:3062–3070

    Article  CAS  Google Scholar 

  • Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a beta-cyclodextrin-linked chitosan derivative. J Polym Sci Part A: Polym Chem 39:169–176

    Article  CAS  Google Scholar 

  • Martin MJ, Artola A, Balaguer MD, Rigola M (2003) Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem Eng J 94:231–239

    Article  CAS  Google Scholar 

  • Mathews P, Weber WJ Jr (1976) Effects of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors. AIChe Symp Ser 73

    Google Scholar 

  • McKay G (1984) Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica. AIChE J 30(4):692–697

    Google Scholar 

  • McKay G, Allen SJ, McConvey IF, Otterburn MS (1981) Transport processes in the sorption of colored ions by peat particles. J Colloid Interface Sci 80:323–339

    Article  CAS  Google Scholar 

  • McKay G, El-Geundi M, Nassar MM (1997) Equilibrium studies for the adsorption of dyes on bagasse pith. Adsorpt Sci Technol 15:251–270

    Article  CAS  Google Scholar 

  • McKay G, Porter JF, Prasad GR (1999) The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air Soil Pollut 114:423–438

    Article  CAS  Google Scholar 

  • Mendez A, Fernandez F, Gasco G (2007) Removal of malachite green using carbon-based adsorbents. Desalination 206:147–153

    Article  CAS  Google Scholar 

  • Meshko V, Markovska L, Mincheva M, Rodrigues AE (2001) Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res 35:3357–3366

    Article  CAS  Google Scholar 

  • Mohamed MM (2004) Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. J Colloid Interface Sci 272:28–34

    Article  CAS  Google Scholar 

  • Morais LC, Freitas OM, Goncalves EP, Vasconcelos LT, Gonzalez Beca CG (1999) Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Res 33:979–988

    Article  CAS  Google Scholar 

  • Motoyuki S (1990) Adsorption engineering. Elsevier Science Publishers, Tokyo

    Google Scholar 

  • Namasivayam C, Arasi D (1997) Removal of Congo Red from wastewater by adsorption onto waste red mud. Chemosphere 34:401–417

    Article  CAS  Google Scholar 

  • Namasivayam C, Kavitha D (2002) Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54:47–58

    Article  CAS  Google Scholar 

  • Namasivayam C, Sumithra S (2005) Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr(III) hydroxide, an industrial solid waste. J Environ Manag 74:207–215

    Article  CAS  Google Scholar 

  • Namasivayam C, Yamuna RT (1995) Adsorption of direct red 12B by biogas residual slurry equilibrium and rate processes. Environ Pollut 89:1–7

    Article  CAS  Google Scholar 

  • Namasivayam C, Prabha D, Kumutha M (1998) Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour Technol 64:77–79

    Article  CAS  Google Scholar 

  • Namasivayam C, Dinesh Kumar M, Selvi K, Ashruffunissa Begum R, Vanathi T, Yamuna RT (2001) ‘Waste’ coir pith–a potential biomass for the treatment of dyeing wastewaters. Biomass Bioenergy 21:477–483

    Article  CAS  Google Scholar 

  • Nassar MM, Magdy YH (1997) Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chem Eng J 66:223–226

    Article  CAS  Google Scholar 

  • Nemr AE, Abdelwahab O, El-Sikaily A, Khaled A (2009) Removal of direct blue- 86 from aqueous solution by new activated carbon developed from orange peel. J Hazard Mater 161:102–110

    Article  CAS  Google Scholar 

  • Neretnieks I (1976) Adsorption in finite batch and counter flow with systems having a nonlinear isotherm. Chem Eng Sci 31:107–114

    Article  CAS  Google Scholar 

  • Netpradit S, Thiravetyan P, Towprayoon S (2003) Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res 37:763–772

    Article  CAS  Google Scholar 

  • O’Mahony T, Guibal E, Tobin JM (2002) Reactive dye biosorption by Rhizopus arrhizus biomass. Enzym Microb Technol 31:456–463

    Article  Google Scholar 

  • Okada K, Yamamoto N, Kameshima Y, Yasumori A (2003) Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. J Colloid Interface Sci 262:194–199

    Article  CAS  Google Scholar 

  • Oliveira LCA, Goncalves M, Oliveira DQL, Guerreiro MC, Guilherme LRG, Dallago RM (2007) Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. J Hazard Mater 141:344–347

    Article  CAS  Google Scholar 

  • Osma JF, Saravia V, Toca-Herrera JL, Couto SR (2007) Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. J Hazard Mater 147:900–905

    Article  CAS  Google Scholar 

  • Otero M, Rozada F, Calvo LF, Garcia AI, Moran A (2003a) Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochem Eng J 15:59–68

    Article  CAS  Google Scholar 

  • Otero M, Rozada F, Calvo LF, Garcıá AI, MoraÅ„ A (2003b) Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes Pigments 57:55–65

    Article  CAS  Google Scholar 

  • Ozacar M, Sengil IA (2002) Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon. Adsorption 8:301–308

    Article  Google Scholar 

  • Ozacar M, Sengil IA (2003) Adsorption of reactive dyes on calcined alunite from aqueous solutions. J Hazard Mater B98:211–224

    Article  CAS  Google Scholar 

  • Ozacar M, Sengil IA (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96:791–795

    Article  CAS  Google Scholar 

  • Ozacar M, Sengil IA (2006) A two stage batch adsorber design for methylene blue removal to minimize contact time. J Environ Manag 80:372–379

    Article  CAS  Google Scholar 

  • Ozcan AS, Erdem B, Ozcan A (2004) Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J Colloid Interface Sci 280:44–54

    Article  CAS  Google Scholar 

  • Ozdemir O, Armagan B, Turan M, Celik MS (2004) Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes Pigments 62:49–60

    Article  CAS  Google Scholar 

  • Pavan FA, Lima EC, Dias SLP, Mazzocato AC (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703–712

    Article  CAS  Google Scholar 

  • Ponnusami V, Vikram S, Srivastava SN (2008) Guava (Psidium Guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater 152:276–286

    Article  CAS  Google Scholar 

  • Poots VJP, McKay G, Healy JJ (1976a) The removal of acid dye from effluent using natural adsorbents—I peat. Water Res 10:1061–1066

    Article  CAS  Google Scholar 

  • Poots VJP, McKay G, Healy JJ (1976b) The removal of acid dye from effluent using natural adsorbents – II wood. Water Res 10:1067–1070

    Article  CAS  Google Scholar 

  • Poots VJP, McKay G, Healy JJ (1978) Removal of basic dye from effluent using wood as an adsorbent. J Water Pollut Control Fed 50:926

    CAS  Google Scholar 

  • Purkait MK, Gusain DS, Dasgupta S, De S (2004) Adsorption behavior of Chrysoidine dye on activated Charcoal and its regeneration characteristics by using different surfactants. Sep Sci Technol 39:2419–2440

    Article  CAS  Google Scholar 

  • Purkait MK, Dasgupta S, De S (2005) Adsorption of eosin dye on activated carbon and its surfactant based desorption. J Environ Manage 76:135–142

    Article  CAS  Google Scholar 

  • Purkait MK, Maiti A, Dasgupta S, De S (2007) Removal of congo red using activated carbon and its regeneration. J Hazard Mater 145:287–295

    Article  CAS  Google Scholar 

  • Santos SCR, Vilar VJP, Boaventura RAR (2008) Waste metal hydroxide sludge as adsorbent for a reactive dye. J Hazard Mater 153:999–1008

    Article  CAS  Google Scholar 

  • Sekaran G, Shanmughasundaram KA, Mariaappan M, Raghavan KV (1995) Utilisation of a solid waste generated in leather industry for removal of dye in aqueous solution. Indian J Chem Technol 2:311–316

    CAS  Google Scholar 

  • Seredych M, Bandosz TJ (2007) Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents. Ind Eng Chem Res 46:1786–1793

    Article  CAS  Google Scholar 

  • Shawabkeh RA, Tutunji MF (2003) Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl Clay Sci 24:111–120

    Article  CAS  Google Scholar 

  • Singha S, Sarkar U, Mondal S, Saha S (2012) Transient behavior of a packed column of Eichhornia Crassipes stem for the removal of hexavalent chromium. Desalination 297:48–58

    Article  CAS  Google Scholar 

  • Sivaraj R, Namasivayam C, Kadirvelu K (2001) Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manag 21:105–110

    Article  CAS  Google Scholar 

  • Spahn H, Schlunder EU (1975) the scale-up of activated carbon columns for water purification, based on results from batch tests—I: theoretical and experimental determination of adsorption rates of single organic solutes in batch tests. Chem Eng Sci 30:529–537

    Google Scholar 

  • Sun G, Xu X (1997) Sunflower stalk as adsorbents for color removal from textile wastewater. Ind Eng Chem Res 36:808–812

    Article  CAS  Google Scholar 

  • Thinakaran N, Panneerselvam P, Baskaralingam P, Elango D, Sivanesan S (2008) Equilibrium and kinetic studies on the removal of acid red 114 from aqueous solutions using activated carbons prepared from seed shells. J Hazard Mater 158:142–150

    Article  CAS  Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1466

    Article  CAS  Google Scholar 

  • Tor A, Cengeloglu Y (2006) Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J Hazard Mater 138:409–415

    Article  CAS  Google Scholar 

  • Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM (2008) Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste. J Hazard Mater 154:73–78

    Article  CAS  Google Scholar 

  • Tseng RL, Wu FC, Juang RS (2003) Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41:487–495

    Article  CAS  Google Scholar 

  • Valix M, Cheung WH, McKay G (2004) Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 56:493–501

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Sailaja P, Srimurali M, Karthikeyan J (1999) Colour removal of monoazo acid dye from aqueous solution by adsorption and chemical coagulation. Environ Eng Policy 1:149–154

    Article  Google Scholar 

  • Walker GM, Hansen L, Hanna JA, Allen SJ (2003) Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res 37:2081–2089

    Article  CAS  Google Scholar 

  • Wang L, Wang A (2007) Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979–985

    Article  CAS  Google Scholar 

  • Wang S, Li L, Wu H, Zhu ZH (2005) Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater. J Colloid Interface Sci 292:336–343

    Article  CAS  Google Scholar 

  • Waranusantigul P, Pokethitiyook P, Kruatrachue M, Upatham ES (2003) Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ Pollut 125:385–392

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Rumer RR Jr (1965) Intraparticle transport of sulfonated alkylbenzenes in a porous solid: diffusion and non-linear adsorption. Water Resour Res 1:361–373

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan–equilibrium isotherm analyses. Process Biochem 39:695–704

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2000) Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. J Hazard Mater 73:63–75

    Article  CAS  Google Scholar 

  • Yoon YH, Nelson JH (1984) Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. Am Ind Hyg Assoc J 45:509–516

    Article  CAS  Google Scholar 

  • Zhang FS, Itoh H (2003) Adsorbents made from waste ashes and post-consumer PET and their potential utilization in wastewater treatment. J Hazard Mater 101:323–337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Purkait, M.K., De, S. (2018). Adsorption of Dyes. In: Advances in Dye Removal Technologies. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6293-3_2

Download citation

Publish with us

Policies and ethics