Skip to main content

On Applications of Fast Domain Partitioning Method to Earthquake Simulations with Spatiotemporal Boundary Integral Equation Method

  • Conference paper
  • First Online:
Book cover Mathematical Analysis of Continuum Mechanics and Industrial Applications II (CoMFoS 2016)

Part of the book series: Mathematics for Industry ((MFI,volume 30))

Included in the following conference series:

Abstract

This paper introduces the recent developments in the earthquake rupture simulations particularly focusing on our applications of the spatiotemporal domain boundary integral equation method (ST-BIEM) and the fast domain partitioning method (FDPM), which enable us to reduce the required memory storage and the computation time, respectively, to \(O(M^{2})\) and \(O(MN^{2})\) from the original values of \(O(M^{2}N)\) and \(O(MN^{3})\) for the given elements M and time steps N. FDPM utilizes the particular spatiotemporal dependence of the stress Green’s function (fundamental solutions) by partitioning the causality cone. FDPM can also seamlessly combine fully dynamic and quasi-dynamic simulation algorithms adapted in seismology. Related issues in seismological simulations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aki, K., Richards, P.G.: Quantitative Seismology, 2nd edn. University Science Books (2002)

    Google Scholar 

  2. Ando, R.: Fast Domain Partitioning Method for dynamic boundary integral equations applicable to non-planar faults dipping in 3-D elastic half-space. Geophys. J. Int. 207, 833–847 (2016)

    Article  Google Scholar 

  3. Ando, R., Okuyama, S.: Deep roots of upper plate faults and earthquake generation illuminated by volcanism. Geophys. Res. Lett. 37 (2010)

    Google Scholar 

  4. Ando, R., Yamashita, T.: Effects of mesoscopic-scale fault structure on dynamic earthquake ruptures: dynamic formation of geometrical complexity of earthquake faults. J. Geophys. Res. 112 (2007). https://doi.org/10.1029/2006JB004612

  5. Ando, R., Kame, N., Yamashita, T.: An efficient boundary integral equation method applicable to the analysis of non-planar fault dynamics. Earth Planets Space 59, 363–373 (2007)

    Article  Google Scholar 

  6. Ando, R., Shaw, B.E., Scholz, C.H.: Quantifying natural fault geometry: statistics of splay fault angles. Bull. Seismol. Soc. Am. 99, 389–395 (2009)

    Article  Google Scholar 

  7. Andrews, D.J.: Rupture velocity of plane strain shear cracks. J. Geophys. Res. 81, 5679–5687 (1976)

    Article  Google Scholar 

  8. Aochi, H., Fukuyama, E.: Three-dimensional nonplanar simulation of the 1992 landers earthquake. J. Geophys. Res. 2002107 (1992). https://doi.org/10.1029/2000JB000061

  9. Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., Baumgartner, J.: Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. J. Geophys. Res. 102, 18453–18475 (1997)

    Article  Google Scholar 

  10. Chen, X.F., Zhang, H.M.: Modelling rupture dynamics of a planar fault in 3-D half space by boundary integral equation method: an overview. Pure Appl. Geophys. 163, 267–299 (2006)

    Article  Google Scholar 

  11. Cochard, A., Madariaga, R.: Dynamic faulting under rate-dependent friction. Pure Appl. Geophys. 142, 419–445 (1994)

    Article  Google Scholar 

  12. Fukuyama, E., Madariaga, R.: Rupture dynamics of a planar fault in a 3D elastic medium: rate- and slip-weakening friction. Bull. Seismol. Soc. Am. 88, 1–17 (1998)

    Google Scholar 

  13. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part I: introduction to H-matrices. Computing 62, 89–108 (1999)

    Google Scholar 

  14. Hardebeck, J.L., Michael, A.J.: Stress orientations at intermediate angles to the San Andreas Fault, California. J. Geophys. Res. 109 (2004)

    Google Scholar 

  15. Ida, Y.: Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)

    Article  Google Scholar 

  16. Ide, S., Takeo, M.: Determination of constitutive relations of fault slip based on seismic wave analysis. J. Geophys. Res. 102, 27379–27391 (1997)

    Article  Google Scholar 

  17. Kame, N., Kusakabe, T.: Proposal of extended boundary integral equation method for rupture dynamics interacting with medium interfaces. J. Appl. Mech. Trans. ASME 79 (2012)

    Google Scholar 

  18. Kanamori, H., Anderson, D.L.: Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65, 1073–1095 (1975)

    Google Scholar 

  19. Koller, M.G., Bonnet, M., Madariaga, R.: Modeling of dynamic crack-propagation using time-domain boundary integral-equations. Wave Motion 16, 339–366 (1992)

    Article  MATH  Google Scholar 

  20. Lapusta, N., Liu, Y.: Three-dimensional boundary integral modeling of spontaneous earthquake sequences and a seismic slip. J. Geophys. Res. 114 (2009)

    Google Scholar 

  21. Lapusta, N., Rice, J.R., Ben-Zion, Y., Zheng, G.T.: Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res. 105, 23765–23789 (2000)

    Google Scholar 

  22. Matsumoto, S. et al.: Spatial heterogeneities in tectonic stress in Kyushu, Japan and their relation to a major shear zone. Earth Planets Space 67 (2015)

    Google Scholar 

  23. Michael, A.J.: Use of focal mechanisms to determine stress - a control study. J. Geophys. Res. 92, 357–368 (1987)

    Article  Google Scholar 

  24. Nishimura, N.: Fast multipole accelerated boundary integral equation methods. Appl. Mech. Rev. 55, 299–324 (2002)

    Article  Google Scholar 

  25. Noda, H., Nakatani, M., Hori, T.: A slower fault may produce a smaller preseismic moment rate: non-1/t(f) acceleration of moment rate during nucleation and dependency on the background slip rate. Geophys. Res. Lett. 40, 4850–4854 (2013)

    Article  Google Scholar 

  26. Ohtani, M., et al.: Fast computation of quasi-dynamic earthquake cycle simulation with hierarchical matrices. Procedia Comput. Sci. 4, 1456–1465 (2011)

    Article  Google Scholar 

  27. Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Article  Google Scholar 

  28. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  29. Tada, T.: Displacement and stress Green’s functions for a constant slip-rate on a quadrantal fault. Geophys. J. Int. 162, 1007–1023 (2005)

    Article  Google Scholar 

  30. Tada, T.: Stress Green’s functions for a constant slip rate on a triangular fault. Geophys. J. Int. 164, 653–669 (2006)

    Article  Google Scholar 

  31. Tada, T., Madariaga, R.: Dynamic modelling of the flat 2-D crack by a semi-analytic BIEM scheme. Int. J. Numer. Methods Eng. 50, 227–251 (2001)

    Article  MATH  Google Scholar 

  32. Tada, T., Yamashita, T.: Non-hypersingular boundary integral equations for two-dimensional non-planar crack analysis. Geophys. J. Int. 130, 269–282 (1997)

    Article  Google Scholar 

  33. Tse, S.T., Rice, J.R.: Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91, 9452–9472 (1986)

    Article  Google Scholar 

  34. Yoshikawa, H., Nishimura, N.: A study on the reduction of the memory requirements and the computational time for elastodynamic TD-BIEM using the temporal linearity of the fundamental solution. Trans. Jpn. Soc. Comp. Met. Eng. 9 (2009) No. 16-091211

    Google Scholar 

Download references

Acknowledgements

This study is supported in part by JSPS/MEXT KAKENHI Grant Numbers JP25800253 and JP26109007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ando, R. (2018). On Applications of Fast Domain Partitioning Method to Earthquake Simulations with Spatiotemporal Boundary Integral Equation Method. In: van Meurs, P., Kimura, M., Notsu, H. (eds) Mathematical Analysis of Continuum Mechanics and Industrial Applications II. CoMFoS 2016. Mathematics for Industry, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-10-6283-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6283-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6282-7

  • Online ISBN: 978-981-10-6283-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics