Advertisement

Semi-infinite Discrete Minmax Fractional Programs

  • Ram U. VermaEmail author
Chapter
Part of the Infosys Science Foundation Series book series (ISFS)

Abstract

A set of generalized second-order parametric necessary optimality conditions and several sets of second-order sufficient optimality conditions for a semi-infinite discrete minmax fractional programming problem applying various generalized second-order \((\phi ,\eta ,\rho ,\theta ,\tilde{m})\)-invexity assumptions are presented.

References

  1. 1.
    Verma, R.U., Zalmai, G.J.: Generalized parametric duality models in discrete minmax fractional programming based on second-order optimality conditions. Commun. Appl. Nonlinear Anal. 22(2), 17–36 (2015)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Verma, R.U., Zalmai, G.J.: Generalized second-order parameter-free optimality conditions in discrete minmax fractional programming. Commun. Appl. Nonlinear Anal. 22(2), 57–78 (2015)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Verma, R.U., Zalmai, G.J.: Parameter-free duality models in discrete minmax fractional programming based on second-order optimality conditions. Trans. Math Program.Appl. 2(11), 1–37 (2014)zbMATHGoogle Scholar
  4. 4.
    Zalmai, G.J.: Generalized second-order \((\cal{F},\beta,\phi,\rho,\theta )\)-univex functions and parametric duality models in semiinfinite discrete minmax fractional programming. Adv. Nonlinear Var. Inequal. 15(2), 63–91 (2012)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of MathematicsTexas State UniversitySan MarcosUSA

Personalised recommendations