Skip to main content

Preparation and Physical Properties of Asymmetric Model Membrane Vesicles

  • Chapter
  • First Online:
The Biophysics of Cell Membranes

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 19))

Abstract

Model biomembrane vesicles composed of lipids have been widely used to investigate the principles of membrane assembly and organization. A limitation of these vesicles has been that they do not mimic the transbilayer lipid asymmetry seen in many natural membranes, most notably the asymmetry in the plasma membrane of eukaryotic cells. Recently, a number of approaches have been developed to prepare asymmetric membranes and study their properties. This review describes methods to prepare asymmetric model membranes, and the physical properties of asymmetric lipid vesicles. Emphasis is placed on the vesicles prepared by cyclodextrin-catalyzed exchange, which has proven to be a versatile and powerful tool, including for studies manipulating lipid asymmetry in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verkleij A, Zwaal R, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen L (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta Biomembr 323:178–193

    Article  CAS  Google Scholar 

  2. Mondal M, Mesmin B, Mukherjee S, Maxfield FR (2009) Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol Biol Cell 20:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu SL, Sheng R, Jung JH, Wang L, Stec E, O’Connor MJ, Song S, Bikkavilli RK, Winn RA, Lee D, Baek K, Ueda K, Levitan I, Kim KP, Cho W (2017) Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 13:268–274

    Article  CAS  PubMed  Google Scholar 

  4. Clark MR (2011) Flippin’ lipids. Nat Immunol 12:373–375

    Article  CAS  PubMed  Google Scholar 

  5. Marquardt D, Heberle FA, Miti T, Eicher B, London E, Katsaras J, Pabst G (2017) 1H NMR shows slow phospholipid Flip-flop in gel and fluid bilayers. Langmuir 33:3731–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McConnell HM, Kornberg RD (1971) Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–1120

    Article  CAS  PubMed  Google Scholar 

  7. Nakano M, Fukuda M, Kudo T, Matsuzaki N, Azuma T, Sekine K, Endo H, Handa T (2009) Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. J Phys Chem B 113:6745–6748

    Article  CAS  PubMed  Google Scholar 

  8. Son M, London E (2013) The dependence of lipid asymmetry upon polar headgroup structure. J Lipid Res 54:3385–3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Son M, London E (2013) The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure. J Lipid Res 54:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leventis R, Silvius JR (2001) Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J 81:2257–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302:1560–1563

    Article  CAS  PubMed  Google Scholar 

  12. Lentz BR (2003) Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 42:423–438

    Article  CAS  PubMed  Google Scholar 

  13. Morizono K, Chen IS (2014) Role of phosphatidylserine receptors in enveloped virus infection. J Virol 88:4275–4290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    Article  CAS  PubMed  Google Scholar 

  15. von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  Google Scholar 

  16. Slusky JS, Dunbrack RL Jr (2013) Charge asymmetry in the proteins of the outer membrane. Bioinformatics 29:2122–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharpe HJ, Stevens TJ, Munro S (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142:158–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown D, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  19. Brown D, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  CAS  PubMed  Google Scholar 

  20. Korlach J, Schwille P, Webb WW, Feigenson GW (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci 96:8461–8466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin Q, London E (2014) The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (Perfringolysin O). J Biol Chem 289:5467–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levental I, Grzybek M, Simons K (2011) Raft domains of variable properties and compositions in plasma membrane vesicles. Proc of Natl Acad Sci USA 108:11411–11416

    Article  CAS  Google Scholar 

  23. Taylor DR, Hooper NM (2007) Role of lipid rafts in the processing of the pathogenic prion and Alzheimer’s amyloid-beta proteins. Semin Cell Dev Biol 18:638–648

    Article  CAS  PubMed  Google Scholar 

  24. Williamson R, Usardi A, Hanger DP, Anderton BH (2008) Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 22:1552–1559

    Article  CAS  PubMed  Google Scholar 

  25. Cuadras MA, Greenberg HB (2003) Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo. Virology 313:308–321

    Article  CAS  PubMed  Google Scholar 

  26. Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    Article  CAS  PubMed  Google Scholar 

  27. Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 4:e1000065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Murphy SC, Hiller NL, Harrison T, Lomasney JW, Mohandas N, Haldar K (2006) Lipid rafts and malaria parasite infection of erythrocytes. Mol Membr Biol 23:81–88

    Article  CAS  PubMed  Google Scholar 

  29. Riethmuller J, Riehle A, Grassme H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147

    Article  PubMed  CAS  Google Scholar 

  30. Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins MD (2008) Interleaflet coupling mechanisms in bilayers of lipids and cholesterol. Biophys J 94:L32–L34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788:64–71

    Article  CAS  PubMed  Google Scholar 

  33. Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a Glycosyl-phosphatidylinositol-anchored protein in Glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:691–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M, Johnson C, Suryawanshi S, Saikam V, Sawant SD, Panda A, Guo Z, Vishwakarma RA, Rao M, Mayor S (2015) Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161:581–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olson F, Hunt C, Szoka F, Vail W, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta Biomembr 557:9–23

    Article  CAS  Google Scholar 

  37. Kremer J, Van der Esker M, Pathmamanoharan C, Wiersema P (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16:3932–3935

    Article  CAS  PubMed  Google Scholar 

  38. Dua J, Rana A, Bhandari A (2012) Liposome: methods of preparation and applications. Int J Pharm Stud Res 3:14–20

    Google Scholar 

  39. Bezrukov SM (2000) Functional consequences of lipid packing stress. Curr Opin Colloid In 5:237–243

    Article  CAS  Google Scholar 

  40. Hope MJ, Nayar R, Mayer LD, Cullis PR (1993) Reduction of liposome size and preparation of unilamellar vesicles by extrusion techniques. Liposome Technol 1:123–139

    CAS  Google Scholar 

  41. Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311

    Article  CAS  Google Scholar 

  42. Akashi K-i, Miyata H, Itoh H, Kinosita K (1996) Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J 71:3242–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugiura S, Kuroiwa T, Kagota T, Nakajima M, Sato S, Mukataka S, Walde P, Ichikawa S (2008) Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Langmuir 24:4581–4588

    Article  CAS  PubMed  Google Scholar 

  44. Arriaga LR, Datta SS, Kim SH, Amstad E, Kodger TE, Monroy F, Weitz DA (2014) Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small 10:950–956

    Article  CAS  PubMed  Google Scholar 

  45. Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA (2011) Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc Natl Acad Sci 108:9431–9436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu PC, Li S, Malmstadt N (2011) Microfluidic fabrication of asymmetric giant lipid vesicles. ACS Appl Mater Interfaces 3:1434–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu L, Schertzer JW, Chiarot PR (2015) Continuous microfluidic fabrication of synthetic asymmetric vesicles. Lab Chip 15:3591–3599

    Article  CAS  PubMed  Google Scholar 

  48. Hamada T, Miura Y, Komatsu Y, Kishimoto Y, Vestergaard M d, Takagi M (2008) Construction of asymmetric cell-sized lipid vesicles from lipid-coated water-in-oil microdroplets. J Phys Chem B 112:14678–14681

    Article  CAS  PubMed  Google Scholar 

  49. Ito H, Yamanaka T, Kato S, Hamada T, Takagi M, Ichikawa M, Yoshikawa K (2013) Dynamical formation of lipid bilayer vesicles from lipid-coated droplets across a planar monolayer at an oil/water interface. Soft Matter 9:9539–9547

    Article  CAS  PubMed  Google Scholar 

  50. Elani Y, Law RV, Ces O (2015) Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors. Phys Chem Chem Phys 17:15534–15537

    Article  CAS  PubMed  Google Scholar 

  51. Hwang WL, Chen M, Cronin B, Holden MA, Bayley H (2008) Asymmetric droplet interface bilayers. J Am Chem Soc 130:5878–5879

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt C, Barenholz Y, Huang C, Thompson T (1978) Monolayer coupling in sphingomyelin bilayer systems. Letters Nature 271:775–777

    Article  CAS  Google Scholar 

  53. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022

    Article  CAS  Google Scholar 

  54. Roberts G (2013) Langmuir-blodgett films. Springer, New York

    Google Scholar 

  55. Watanabe R, Soga N, Yamanaka T, Noji H (2014) High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition. Sci Rep 4:7076

    Article  PubMed  PubMed Central  Google Scholar 

  56. Crane JM, Kiessling V, Tamm LK (2005) Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy. Langmuir 21:1377–1388

    Article  CAS  PubMed  Google Scholar 

  57. Anglin TC, Conboy JC (2009) Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy. Biochemistry 48:10220–10234

    Article  CAS  PubMed  Google Scholar 

  58. Anglin TC, Cooper MP, Li H, Chandler K, Conboy JC (2010) Free energy and entropy of activation for phospholipid flip-flop in planar supported lipid bilayers. J Phys Chem B 114:1903–1914

    Article  CAS  PubMed  Google Scholar 

  59. Brown KL, Conboy JC (2013) Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine. J Phys Chem B 117:15041–15050

    Article  CAS  PubMed  Google Scholar 

  60. Allhusen JS, Kimball DR, Conboy JC (2016) Structural origins of cholesterol accelerated lipid flip-flop studied by sum-frequency vibrational spectroscopy. J Phys Chem B 120:3157–3168

    Article  CAS  PubMed  Google Scholar 

  61. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci 69:3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Collins MD, Keller SL (2008) Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc Natl Acad Sci 105:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murray DH, Tamm LK, Kiessling V (2009) Supported double membranes. J Struct Biol 168:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hussain NF, Siegel AP, Ge Y, Jordan R, Naumann CA (2013) Bilayer asymmetry influences integrin sequestering in raft-mimicking lipid mixtures. Biophys J 104:2212–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pagano RE, Martin OC, Schroit AJ, Struck DK (1981) Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogs between vesicle populations. Biochemistry 20:4920–4927

    Article  CAS  PubMed  Google Scholar 

  66. Bloj B, Zilversmit D (1976) Asymmetry and transposition rate of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15:1277–1283

    Article  CAS  PubMed  Google Scholar 

  67. Crain RC, Zilversmit DB (1980) Two nonspecific phospholipid exchange proteins from beef liver. 1. Purification and characterization. Biochemistry 19:1433–1439

    Article  CAS  PubMed  Google Scholar 

  68. Everett J, Zlotnick A, Tennyson J, Holloway P (1986) Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine. J Biol Chem 261:6725–6729

    CAS  PubMed  Google Scholar 

  69. Herrmann A, Zachowski A, Devaux PF (1990) Protein-mediated phospholipid translocation in the endoplasmic reticulum with a low lipid specificity. Biochemistry 29:2023–2027

    Article  CAS  PubMed  Google Scholar 

  70. Holzer M, Momm J, Schubert R (2010) Lipid transfer mediated by a recombinant pro-sterol carrier protein 2 for the accurate preparation of asymmetrical membrane vesicles requires a narrow vesicle size distribution: a free-flow electrophoresis study. Langmuir 26:4142–4151

    Article  CAS  PubMed  Google Scholar 

  71. Redelmeier T, Hope M, Cullis P (1990) On the mechanism of transbilayer transport of phosphatidylglycerol in response to transmembrane pH gradients. Biochemistry 29:3046–3053

    Article  CAS  PubMed  Google Scholar 

  72. Hope MJ, Redelmeier TE, Wong KF, Rodrigueza W, Cullis PR (1989) Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Biochemistry 28:4181–4187

    Article  CAS  PubMed  Google Scholar 

  73. Mui B, Döbereiner H, Madden T, Cullis P (1995) Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J 69:930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pautot S, Frisken BJ, Weitz DA (2003) Engineering asymmetric vesicles. Proc of Natl Acad Sci USA 100:10718–10721

    Article  CAS  Google Scholar 

  75. Elani Y, Purushothaman S, Booth PJ, Seddon JM, Brooks NJ, Law RV, Ces O (2015) Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers. Chem Commun 51:6976–6979

    Article  CAS  Google Scholar 

  76. Zhang X, Zong W, Hu Y, Luo N, Cheng W, Han X (2016) A pH-responsive asymmetric lipid vesicle as drug carrier. J Microencapsul 33:663–668

    Article  CAS  PubMed  Google Scholar 

  77. Lu L, Doak WJ, Schertzer JW, Chiarot PR (2016) Membrane mechanical properties of synthetic asymmetric phospholipid vesicles. Soft Matter 12:7521–7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kamiya K, Kawano R, Osaki T, Akiyoshi K, Takeuchi S (2016) Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat Chem 8:881–889

    Article  CAS  PubMed  Google Scholar 

  79. Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley, Weinheim

    Book  Google Scholar 

  80. Somogyi G, Posta J, Buris L, Varga M (2006) Cyclodextrin (CD) complexes of cholesterol–their potential use in reducing dietary cholesterol intake. Die Pharmazie- Int J Pharm Sci 61:154–156

    CAS  Google Scholar 

  81. Huang Z, London E (2013) Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir 29:14631–14638

    Article  CAS  PubMed  Google Scholar 

  82. Lin Q, London E (2014) Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PLoS One 9:e87903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Szente L, Fenyvesi É (2017) Cyclodextrin-lipid complexes: cavity size matters. Struct Chem 28:479–492

    Google Scholar 

  84. Kim J, London E (2015) Using sterol substitution to probe the role of membrane domains in membrane functions. Lipids 50:721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophy Acta Biomembr 1768:1311–1324

    Article  CAS  Google Scholar 

  86. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of α-, β-and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186:17–22

    Article  CAS  PubMed  Google Scholar 

  87. Christian A, Haynes M, Phillips M, Rothblat G (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    CAS  PubMed  Google Scholar 

  88. Legendre J, Rault I, Petit A, Luijten W, Demuynck I, Horvath S, Ginot Y, Cuine A (1995) Effects of β-cyclodextrins on skin: implications for the transdermal delivery of piribedil and a novel cognition enhancing-drug, S-9977. Eur J Pharm Sci 3:311–322

    Article  CAS  Google Scholar 

  89. Niu S-L, Mitchell DC, Litman BJ (2002) Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin effects on receptor activation. J Biol Chem 277:20139–20145

    Article  CAS  PubMed  Google Scholar 

  90. Tanhuanpää K, Somerharju P (1999) γ-Cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture IMPORTANCE OF MOLECULAR HYDROPHOBICITY IN PHOSPHOLIPID TRAFFICKING STUDIES. J Biol Chem 274:35359–35366

    Article  PubMed  Google Scholar 

  91. Tanhuanpää K, Cheng KH, Anttonen K, Virtanen JA, Somerharju P (2001) Characteristics of pyrene phospholipid/γ-cyclodextrin complex. Biophys J 81:1501–1510

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anderson TG, Tan A, Ganz P, Seelig J (2004) Calorimetric measurement of phospholipid interaction with methyl-beta-cyclodextrin. Biochemistry 43:2251–2261

    Article  CAS  PubMed  Google Scholar 

  93. Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270:17250–17256

    Article  CAS  PubMed  Google Scholar 

  94. Cheng H-T, London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284:6079–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng HT, London E (2011) Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature. Biophys J 100:2671–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chiantia S, Schwille P, Klymchenko AS, London E (2011) Asymmetric GUVs prepared by MbetaCD-mediated lipid exchange: an FCS study. Biophys J 100:L1–L3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oglęcka K, Rangamani P, Liedberg B, Kraut RS, Parikh AN (2014) Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. elife 3:e03695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chiantia S, London E (2012) Acyl chain length and saturation modulate interleaflet coupling in asymmetric bilayers: effects on dynamics and structural order. Biophys J 103:2311–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chiantia S, Klymchenko AS, London E (2012) A novel leaflet-selective fluorescence labeling technique reveals differences between inner and outer leaflets at high bilayer curvature. Biochim Biophys Acta Biomembr 1818:1284–1290

    Article  CAS  Google Scholar 

  100. Armstrong VT, Brzustowicz MR, Wassall SR, Jenski LJ, Stillwell W (2003) Rapid flip-flop in polyunsaturated (docosahexaenoate) phospholipid membranes. Arch Biochem Biophys 414:74–82

    Article  CAS  PubMed  Google Scholar 

  101. Smith M, Jungalwala F (1981) Reversed-phase high performance liquid chromatography of phosphatidylcholine: a simple method for determining relative hydrophobic interaction of various molecular species. J Lipid Res 22:697–704

    CAS  PubMed  Google Scholar 

  102. Lin Q, London E (2015) Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophys J 108:2212–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bakht O, Pathak P, London E (2007) Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophys J 93:4307–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vitrac H, MacLean DM, Jayaraman V, Bogdanov M, Dowhan W (2015) Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc Natl Acad Sci 112:13874–13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vitrac H, Bogdanov M, Dowhan W (2013) In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proc Natl Acad Sci 110:9338–9343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Perillo VL, Peñalva DA, Vitale AJ, Barrantes FJ, Antollini SS (2016) Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in lo domains. Arch Biochem Biophys 591:76–86

    Article  CAS  PubMed  Google Scholar 

  107. Li G, Kim J, Huang Z, Clair JRS, Brown DA, London E (2016) Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci 201610705

    Google Scholar 

  108. Visco I, Chiantia S, Schwille P (2014) Asymmetric supported lipid bilayer formation via methyl-β-cyclodextrin mediated lipid exchange: influence of asymmetry on lipid dynamics and phase behavior. Langmuir 30:7475–7484

    Article  CAS  PubMed  Google Scholar 

  109. Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW (2016) Sub-nanometer structure of an asymmetric model membrane: Interleaflet coupling influences domain properties. Langmuir 32:5195–5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Petazzi RA, Gramatica A, Herrmann A, Chiantia S (2015) Time-controlled phagocytosis of asymmetric liposomes: application to phosphatidylserine immunoliposomes binding HIV-1 virus-like particles. Nanomedicine 11:1985–1992

    Article  CAS  PubMed  Google Scholar 

  111. Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035

    CAS  PubMed  Google Scholar 

  112. Adada M, Luberto C, Canals D (2016) Inhibitors of the sphingomyelin cycle: sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids 197:45–59

    Article  CAS  PubMed  Google Scholar 

  113. Delgado A, Casas J, Llebaria A, Abad JL, Fabrias G (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta Biomembr 1758:1957–1977

    Article  CAS  Google Scholar 

  114. Aguilar PS, Heiman MG, Walther TC, Engel A, Schwudke D, Gushwa N, Kurzchalia T, Walter P (2010) Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. Proc Natl Acad Sci 107:4170–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ott RG, Athenstaedt K, Hrastnik C, Leitner E, Bergler H, Daum G (2005) Flux of sterol intermediates in a yeast strain deleted of the lanosterol C-14 demethylase Erg11p. Biochim Biophys Acta Mol Cell Biol Lipids 1735:111–118

    Article  CAS  Google Scholar 

  116. Dowhan W (2009) Molecular genetic approaches to defining lipid function. J Lipid Res 50:S305–S310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wikström M, Kelly AA, Georgiev A, Eriksson HM, Klement MR, Bogdanov M, Dowhan W, Wieslander Å (2009) Lipid-engineered Escherichia Coli membranes reveal critical lipid headgroup size for protein function. J Biol Chem 284:954–965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kainu V, Hermansson M, Somerharju P (2010) Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res 51:3533–3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kainu V, Hermansson M, Somerharju P (2008) Electrospray ionization mass spectrometry and exogenous heavy isotope-labeled lipid species provide detailed information on aminophospholipid acyl chain remodeling. J Biol Chem 283:3676–3687

    Google Scholar 

  120. Koivusalo M, Jansen M, Somerharju P, Ikonen E (2007) Endocytic trafficking of sphingomyelin depends on its acyl chain length. Mol Biol Cell 18:5113–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Support from NIH grant GM 112638 and GM 122493 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin London .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

St. Clair, J.R., Wang, Q., Li, G., London, E. (2017). Preparation and Physical Properties of Asymmetric Model Membrane Vesicles. In: Epand, R., Ruysschaert, JM. (eds) The Biophysics of Cell Membranes. Springer Series in Biophysics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-10-6244-5_1

Download citation

Publish with us

Policies and ethics