Skip to main content

Potentials of Microbial Inoculants in Soil Productivity: An Outlook on African Legumes

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Nutrient availability is one of the major limiting factors affecting legume production in Africa. With the limited arable land resources, meeting the dietary requirement of the ever-increasing world population becomes a serious challenge. The most frequently deficient nutrient on crop fields is nitrogen (N). Inconvenient increase in prices of chemical nitrogen fertilizers together with the environmental problems associated with their excessive use calls for alternative low-cost and ecologically friendly soil-plant fertilization technologies. Soil microorganisms play significant roles in nutrient mineralization and supply to plant hence promoting plant growth. Soil microbes suppress soilborne plant diseases and destroy environmentally hazardous compounds in soil. Microbial inoculants are agricultural amendments that use microorganisms such as rhizobia and endophytes to promote legume growth. These microbes form symbiotic relationships with the target leguminous plant, and both parts benefit. The structure and function of the plant microbiome are major determinants of plant health and productivity. Microbial inoculants are the potential tools for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abaidoo R, Buahen S, Turner A, Dianda M (2013) Bridging the grain legume gap through agronomy. IITA R4D review. Issue 9. January, 2013. Available at; http://r4dreview.org/2013/01/bridging-the-grain-legume-yield-gap-through-agronomy/. Accessed on 24/9/2013.

  • Abd-Alla MH, El-Enany A-WE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for Faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58. doi:http://dx.doi.org/10.1016/j.micres.2013.07.007

  • Adeleke R, Cloete T, Bertrand A, Khasa D (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22:535–544. https://doi.org/10.1007/s00572-012-0431-5

    Article  CAS  PubMed  Google Scholar 

  • Adeyemi S, Lewu F, Adebola P, Bradley G, Okoh A (2012) Protein content variation in cowpea genotypes (Vigna unguiculata L. Walp.) grown in the Eastern Cape province of South Africa as affected by mineralised goat manure. Afr J Agric Res 7:4943–4947. https://doi.org/10.5897/AJAR11.1680

    Google Scholar 

  • Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18:117–127. https://doi.org/10.4265/bio.18.117

    Article  PubMed  Google Scholar 

  • Ajilogba CF, Babalola OO, Ahmad F (2013) Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Stud Ethno-Med 7:205–216

    Article  Google Scholar 

  • Ali N (2010) Soybean processing and utilization. In: Singh G (ed) The soybean: botany, production and uses. CAB International, Wallingford, pp 345–374

    Chapter  Google Scholar 

  • Alori ET (2016) Phytoremediation using microbial communities II. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants. Springer, Cham, pp 183–190

    Google Scholar 

  • Alori E., Fawole O. (2012) Phytoremediation of soils contaminated with aluminium and manganese by two arbuscular mycorrhizal fungi. J Agric Sci 4:246–252. doi:http://dx.doi.org/10.5539/jas.v4n8p246

    Google Scholar 

  • Alori E, Fawole O, Afolayan A (2012) Characterization of arbuscular mycorrhizal spores isolated from Southern Guinea savanna of Nigeria. J Agric Sci 4:13–19. doi:http://dx.doi.org/10.5539/jas.v4n7p13

    Google Scholar 

  • Alori ET, Dare MO, Babalola OO (2017) Microbial inoculants for soil quality and plant health. Sustain Agric Rev 22:281–307. https://doi.org/10.1007/978-3-319-48006-0_9

    Article  Google Scholar 

  • Ampomah OY, Ofori-Ayeh E, Solheim B, Svenning MM (2008) Host range, symbiotic effectiveness and nodulation competitiveness of some indigenous cowpea bradyrhizobia isolates from the transitional savanna zone of Ghana. Afr J Biotechnol 7:988–996

    CAS  Google Scholar 

  • Aziz A, Ahiabor B, Opoku A, Abaidoo R (2016) Contributions of rhizobium inoculants and phosphorus fertilizer to biological nitrogen fixation, growth and grain yield of three soybean varieties on a fluvic luvisol. Am J Exp Agric 10:1–11. https://doi.org/10.9734/AJEA/2016/20072

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. https://doi.org/10.1007/s10529-010-0347-0

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Glick BR (2012a) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7:2431–2439. https://doi.org/10.5897/SRE11.1714

    Google Scholar 

  • Babalola OO, Glick BR (2012b) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549

    Google Scholar 

  • Bailly A., Weisskopf L. (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85. doi:http://dx.doi.org/10.4161/psb.7.1.18418

    Google Scholar 

  • Bala A. (2011) Emerging challenges in cross-border movement of inoculants in sub-Saharan Africa. N2 Africa project (putting nitrogen fixation to work for smallholder farmers in Africa). Podcaster 8, August, 2011.

    Google Scholar 

  • Bala A, Karanja N, Murwira M, Lwimbi L, Abaidoo R, Giller K (2011) Production and use of Rhizobial inoculants in Africa, N2Africa

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:http://dx.doi.org/10.1016/j.tplants.2012.04.001

    Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. doi:https://doi.org/10.1007/s00253-009-2092-7

    Google Scholar 

  • Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the rhizobia: current perspectives. British Microbiol Res J 4:616–639

    Article  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66–76. doi:https://doi.org/10.1186/1475-2859-13-66

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emer-gence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi:https://doi.org/10.1007/s11274-011-0979-9

    Google Scholar 

  • Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014:1–14. doi:http://dx.doi.org/10.1155/2014/651593

    Google Scholar 

  • Blummel M, Wamatu J, Rischkowsky B, Moyo S (2016) Opportunities and limitations of multidimensional crop improvement in grain legumes to support increased productivity in mixed crop livestock systems, presented at the international conference on pulses for health, nutrition and sustainable agriculture in drylands, Marrakesh, Morocco, 18–20 April 2016, ILRI, Nairobi

    Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22. doi:http://dx.doi.org/10.1016/j.fgb.2010.04.004

    Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes this paper is one of a selection of papers published in the special issue on systematics research. Botany 86:697–718. https://doi.org/10.1139/B09-065.

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One 8:e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. https://doi.org/10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Collignon C, Uroz S, Turpault M, Frey-Klett P (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol Biochem 43:2012–2022. doi:http://dx.doi.org/10.1016/j.soilbio.2011.05.008

    Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759. https://doi.org/10.1038/nrmicro2637

    Article  CAS  PubMed  Google Scholar 

  • Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legumes and non legumes. Afr J Microbiol Res 8:1562–1572. https://doi.org/10.5897/AJMR2013.6541

    Article  Google Scholar 

  • Dudeja SS, Giri R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260. https://doi.org/10.1002/jobm.201100063

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. https://doi.org/10.1007/s10886-012-0135-5

    Article  CAS  PubMed  Google Scholar 

  • El-Jasser AS (2011) Chemical and biological properties of local cowpea seed protein grown in Gizan region. World Acad Sci Eng Technol 5:466–472

    Google Scholar 

  • Farzaneh M, Wichmann S, Vierheilig H, Kaul HP (2009) The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften 13:15–22

    Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799. https://doi.org/10.1111/j.1462-2920.2011.02488.x

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ., Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte- mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234. doi:https://doi.org/10.1111/j.1574-6968.2009.01637.x

    Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:438–443. doi:http://dx.doi.org/10.1016/j.pbi.2012.04.004

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  • Glick B (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. doi:http://dx.doi.org/10.6064/2012/963401

    Google Scholar 

  • GRDC (2013) (Grains Research and Development Corporation), Australia. Rhizobial inoculants fact sheet. www.coretext.com.au http://www.grdc.com.au/~/media/B943F697AF9A406ABBA20E136FDB7DC4.ashx

  • Guimarães AA, Jaramillo PMD, Nóbrega RSA, Florentino LA, Silva KB, de Souza Moreira FM (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78:6726–6733. https://doi.org/10.1128/AEM.01303-12

    Article  Google Scholar 

  • Hawkesford MJ (2011) An overview of nutrient use efficiency and strategies for crop improvement. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Oxford, pp 3–19

    Chapter  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. https://doi.org/10.1039/B906679A

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213. https://doi.org/10.1007/s00374-010-0442-3

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang S-M, Kim Y-H, Yun B-W, Al-Rawahi A, Al-Harrasi A, Lee I-J (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69. doi:http://doi.org/10.1016/j.envexpbot.2016.09.009

    Google Scholar 

  • Koki T, Takayoshi W (2013) Recent trends in microbial inoculants in agriculture. Microbes Environ 28:403–404. https://doi.org/10.1264/jsme2.ME2804rh

    Article  Google Scholar 

  • Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodules endophytes more diverse than endophytes from roots of legumes or non legumes in soils of India. J Microbiol Biotechnol Res 3:83–92

    Google Scholar 

  • Kutu F, Asiwe J (2010) Assessment of maize and dry bean productivity under different intercrop systems and fertilization regimes. Afr J Agric Res 5:1627–1631. https://doi.org/10.5897/AJAR09.147.

    Google Scholar 

  • Kutu FR, Diko ML (2011) Mineralogical considerations in soil fertility management on selected farmlands in Limpopo and northwest provinces, South Africa. In: Ekosse GIE et al (eds) An innovative perspective on the role of clays and clay minerals and Geophagia on economic development. Book of conference proceeding of the first international conference of clays and clay minerals in Africa and second international conference on Geophagia in Southern Africa, pp 124–130. http://www.saweb.co.za/claymineralsafrica.co.za/html/ebook2.html

  • Laditi MA, Nwoke OC, Jemo M, Abaidoo RC, Ogunjobi AA (2012) Evaluation of microbial inoculants as biofertilizers for the improvement of growth and yield of soybean and maize crops in savanna soils. Afr J Agric Res 7:405–413. https://doi.org/10.5897/AJAR11.904

    Article  Google Scholar 

  • Legume Phylogeny Working Group (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62:217–248. doi:https://doi.org/10.12705/622.8

    Google Scholar 

  • Leveau JH, Uroz S, De Boer W (2010) The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 12:281–292. https://doi.org/10.1111/j.1462-2920.2009.02010.x

    Article  CAS  PubMed  Google Scholar 

  • Machido DA, Olufajo OO, Yakubu SE, Yusufu S (2011) Enhancing the contribution of the legumes to the N fertility of soils of the semi-arid zone of Nigeria. Afr J Biotechnol 10:1848–1853. https://doi.org/10.5897/AJB10.338

    Google Scholar 

  • Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytology 2:42–54

    Google Scholar 

  • Malik D, Sindhu S (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17:25–32. https://doi.org/10.1007/s12298-010-0041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli F., Marasco R., Balloi A., Rolli E., Cappitelli F., Daffonchio D., Borin S. (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481. doi:http://dx.doi.org/10.1016/j.jbiotec.2011.11.013

    Google Scholar 

  • Marcel GA, Heijden VD, Bardgett RD, Straalen NMV (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466. https://doi.org/10.1016/j.tim.2009.07.004

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi:https://doi.org/10.1111/1574-6976.12028

    Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930. https://doi.org/10.1007/s00253-010-3004-6

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Mishra S, Selvakumar G (2009) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentin (Lens culinaris L.) World J Microbiol Biotechnol 25:753–761. https://doi.org/10.1007/s11274-009-9963-z

    Article  Google Scholar 

  • Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production, crop plant. InTech, Europe

    Google Scholar 

  • Muhammad AI, Muhammad K, Muhammad SS, Maqshoof A, Nawaf S, Naeem A (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting Rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.) Chilean J Agric Res 72:104–110

    Article  Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané J-M, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710. https://doi.org/10.1128/AEM.01055-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N’cho CO, Lesueur D, Yusuf AA (2015) Combined microbial inoculation as a promising approach to enhance promiscuous soybean nodulation and nitrogen content in Sudan Savanna. Int J Sustain Agric Res 2:86–97. 10.18488/journal.70/2015.2.3/70.3.86.97

    Google Scholar 

  • National Research Council (2006) Lost crops of Africa. Volume II: Vegetables The National Academies Press, Washington, DC

    Google Scholar 

  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacteria isolates from root nodules of Lespedeza sp. Biol Fertil Soils 46:807–816. https://doi.org/10.1007/s00374-010-0485-5

    Article  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  CAS  PubMed  Google Scholar 

  • Peix A., Ramírez-Bahena M.H., Velázquez E., Bedmar E.J. (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42. doi:http://dx.doi.org/10.1080/07352689.2014.897899

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:http://dx.doi.org/10.1016/j.pbi.2007.05.004

    Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424. https://doi.org/10.1146/annurev-phyto-081211-172908

    Article  CAS  PubMed  Google Scholar 

  • Rajendran G., Sing F., Desai A.J., Archana G. (2008) Enhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550. doi:http://dx.doi.org/10.1016/j.biortech.2007.06.057

    Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes J, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37. https://doi.org/10.1007/s11104-008-9606-4

    Article  CAS  Google Scholar 

  • Ronner E, Franke A, Vanlauwe B, Dianda M, Edeh E, Ukem B, Bala A, Van Heerwaarden J, Giller KE (2016) Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in Northern Nigeria. Field Crop Res 186:133–145. doi:http://dx.doi.org/10.1016/j.fcr.2015.10.023

    Google Scholar 

  • Rousk J., Bååth E. (2007) Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol Ecol 62:258–267. doi:https://doi.org/10.1111/j.1574-6941.2007.00398.x

    Google Scholar 

  • Ruby J, Raghunath M (2011) A review: bacteria endophytes and their bioprospecting. J Pharm Research 4:795–799

    Google Scholar 

  • Ryan RP, Germaine K, Francis A, Ryan DJ (2008) Bacteria endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. doi:https://doi.org/10.1111/j.1574-6968.2007.00918.x

    Google Scholar 

  • Saini R, Kumar V, Dudeja SS, Pathak DV (2015) Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. Int J Curr Microbiol App Sci 4:207–221

    Google Scholar 

  • Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci 203–204:107–114. doi:http://dx.doi.org/10.1016/j.plantsci.2013.01.001

    Google Scholar 

  • Sáncheza A.C., Gutiérrezc R.T., Santanab R.C., Urrutiab A.R., Fauvarta M., Michielsa J., Vanderleydena J. (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur J Soil Biol 62:105–112. doi:http://dx.doi.org/10.1016/j.ejsobi.2014.03.004

    Google Scholar 

  • Sánchez-Romera B, Ruiz-Lozano JM, Zamarreño ÁM, García-Mina JM, Aroca R (2016) Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26:111–122

    Article  PubMed  Google Scholar 

  • Sanginga N (2003) Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant Soil 252:25–39. https://doi.org/10.1023/a:1024192604607

    Article  CAS  Google Scholar 

  • Särkinen TE, Marcelo-Peña JL, Yomona AD, Simon MF, Pennington RT, Hughes CE (2011) Underestimated endemic species diversity in the dry inter-Andean valley of the Río Marañón, Northern Peru: an example from Mimosa (Leguminosae, Mimosoideae). Taxon 60:139–150. doi:http://www.jstor.org/stable/41059828

  • Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA (2011) The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae). PLoS One 6:e22275. doi:http://dx.doi.org/10.1371/journal.pone.0022275

  • Sebetha E, Ayodele V, Kutu F, Mariga I (2010) Yields and protein content of two cowpea varieties grown under different production practices in Limpopo Province, South Africa. Afr J Biotechnol 9:628–634

    Article  CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A, Abdelkhalek A, Sadowsky MJ (2017) Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 71:91–109. https://doi.org/10.1007/s13199-016-0462-3

    Article  Google Scholar 

  • Simon MF, Grether R, de Queiroz LP, Särkinen TE, Dutra VF, Hughes CE (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot 98:1201–1221. doi:http://dx.doi.org/10.1590/S1415-475738420150053

    Google Scholar 

  • Singh DP, Singh HB, Prabha R (2016) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi

    Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprent J.I., Odee D.W., Dakora F.S. (2009) African legumes: a vital but under-utilized resource. J Exp Bot 61:1257–1265. doi:https://doi.org/10.1093/jxb/erp342

    Google Scholar 

  • Stefanović S, Pfeil BE, Palmer JD, Doyle JJ (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128. doi:http://dx.doi.org/10.1600/036364409787602221

    Google Scholar 

  • Svubure O, Mpepereki S, Makonese F (2010) Sustainability of maize-based cropping systems in rural areas of Zimbabwe: an assessment of the residual soil fertility effects of grain legumes on maize (Zea mays [L.]) under field conditions. Int J Eng Sci Technol 2:141–148. doi:http://dx.doi.org/10.4314/ijest.v2i7.63755

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757. https://doi.org/10.1128/AEM.02239-08

    Article  CAS  PubMed  Google Scholar 

  • Taghavi s., van der Lelie D., Hoffman A., Zhang Y.B., Walla M.D., Vangronsveld J., Newman L., Monchy S. (2010) Genome sequence of the plant growth-promoting endophyte bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943. doi:http://dx.doi.org/10.1371/journal.pgen.1000943

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71. https://doi.org/10.1111/j.1365-2389.2006.00771.x

    Article  CAS  Google Scholar 

  • Torres AR, Kaschuk G, Saridakis GP, Hungria M (2012) Genetic variability in Bradyrhizobium japonicum strains nodulating soybean Glycine max (L.) Merrill. World J Microbiol Biotechnol 28:1831–1835. https://doi.org/10.1007/s11274-011-0964-3

    Article  PubMed  Google Scholar 

  • Trabelsi D., Mhamdi R. (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res Int 2013:1–11. doi:http://dx.doi.org/10.1155/2013/863240

    Google Scholar 

  • Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116:34–46. doi:http://dx.doi.org/10.1016/j.agee.2006.03.016

    Google Scholar 

  • Velázquez E, R Silva L, Peix Á (2010) Legumes: a healthy and ecological source of flavonoids. Curr Nutr Food Sci 6:109–144. doi:https://doi.org/10.2174/157340110791233247

    Google Scholar 

  • Vyas P, Robin J, Sharma KC, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20:1724–1734. https://doi.org/10.4014/jmb.1007.07030

    CAS  PubMed  Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535. doi:http://dx.doi.org/10.1016/j.pbi.2008.06.013

    Google Scholar 

  • Wallander H, Ekblad A, Godbold D, Johnson D, Bahr A, Baldrian P, Björk R, Kieliszewska-Rokicka B, Kjøller R, Kraigher H (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils–a review. Soil Biol Biochem 57:1034–1047. doi:http://dx.doi.org/10.1016/j.soilbio.2012.08.027

    Google Scholar 

  • Wang K, Yan PS, Ding QL, Wu QX, Wang ZB, Peng J (2013) Diversity of culturable root associated/endophytic bacteria and their chinolytic and aflatoxin inhibition activity of peanut plant in china. World J Microbiol Biotechnol 29:1–10. https://doi.org/10.1007/s11274-012-1135-x.

    Article  PubMed  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384. https://doi.org/10.1128/JB.05055-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakubu H, Kwari JD, Ngala AL (2010) N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of Sudano-Sahelian zone of North Eastern Nigeria. Niger J Basic Appl Sci 18:229–236. doi:http://dx.doi.org/10.4314/njbas.v18i2.64325.

    Google Scholar 

  • Youseif SH, Abd El-Megeed FH, Saleh SA (2017) Improvement of Faba bean yield using Rhizobium/Agrobacterium inoculant in low-fertility sandy soil. Agronomy 7:2–12. https://doi.org/10.3390/agronomy7010002

    Article  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150. doi:http://dx.doi.org/10.1094/MPMI-06-11-0179

    Google Scholar 

  • Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56:192–220

    Article  CAS  PubMed  Google Scholar 

  • Zhao LF, Xu YJ, Ma ZQ, Deng ZS (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules Brazil J Microbiol 44:629–637. doi:http://dx.doi.org/10.1590/S1517-83822013000200043

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Foundation, South Africa and FSSNA for funds (grant numbers UID81192, UID104015, UID98460) that have supported research in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aremu, B.R., Alori, E.T., Kutu, R.F., Babalola, O.O. (2017). Potentials of Microbial Inoculants in Soil Productivity: An Outlook on African Legumes. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_3

Download citation

Publish with us

Policies and ethics