Skip to main content

Efficacy of Entomopathogenic Fungi as Green Pesticides: Current and Future Prospects

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

The growing commercialization all over the world has led to a boost in the widespread use of chemical pesticides for crop protection in agricultural fields. It has not only contributed to an increase in food production, but its toxic and non-biodegradable character has also resulted in adverse effects on environment and nontarget organisms. Moreover, most of the pests have developed resistance against them. These drawbacks of conventional pesticides have led to an increase in the need for the search of some novel, non-harmful, eco-friendly pesticides. Natural pest control materials commonly known as biocontrol agents are the most promising of them. Biocontrol agents include macroorganisms as well as microorganisms. The microorganisms used are bacteria, fungi, viruses, nematodes and protozoan. The exploitation of these natural and renewable resources is essential for a successful biocontrol strategy. The present review focuses on the use of fungi as potential biocontrol agent for insect pest management. Different fungal formulations and metabolites that have been successfully implemented for pest control and some of the recent patents in this field are also discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal GP, Rajak RC, Sandhu SS, Khan AK (1990) Beauveria bassiana: a potential pathogen of Atteva fabriciella, the insect of mahaneem. J Trop For 6:172–174

    Google Scholar 

  • Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 73:295–302

    Google Scholar 

  • Ali S, Zhen H, Wang Q, Shun XR (2011) Production and regulation of extracellular proteases from the Entomopathogenic fungus Metarhizium anisopliae (Cordycipitaceae; Hypocreales) in the presence of diamondback Moth cuticle. Pak J Zool 43:1203–1213

    Google Scholar 

  • Al-Olayan EM (2013) Evaluation of pathogenicity of certain mitosporic ascomycete fungi to the house fly, Musca domestica L. (diptera: muscidae). J Saudi Chem Soc 17:97–100

    Article  Google Scholar 

  • Alter JA, Vandenberg JJD (2000) Factors that influencing the infectivity of isolates of Paecilomyces fumosoroseus against diamond back Moth. J Invertebr Pathol 78:31–36

    Article  Google Scholar 

  • Amala U, Jiji T, Naseema A (2013) Laboratory evaluation of local isolate of entomopathogenic fungus, Paecilomyces lilacinus Thom Samson (ITCC 6064) against adults of melon fruit fly, Bactrocera cucurbitae Coquillett (Diptera; Tephritidae). J Trop Agri 51:132–134

    Google Scholar 

  • Amarasena S, Mohotti KM, Ahangama D (2011) A locally isolated entomopathogenic fungus to control tea red spider mites (Oligonychus coffeae, Acarina tetranychidae). Trop Agric Res 22:384–391

    Google Scholar 

  • Andersson PF (2012) Secondary metabolites associated with plant disease, plant defense and biocontrol [Ph.D. thesis]. Uppsala: Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Avery PB, Faulla J, Simmands MSJ (2004) Effect of different photoperiods on the infectivity and colonization of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay. J Insect Sci 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Awaad AS, Al-Jaber NA, Zain ME (2012) New antifungal compounds from Aspergillus terreus isolated from desert soil. Phytother Res 26:1872–1872

    Article  CAS  PubMed  Google Scholar 

  • Babu V, Murugan S, Thangaraja P (2001) Laboratory studies on the efficacy of neem and the entomopathogenic fungus Beauveria bassiana on Spodoptera litura. Entomology 56:56–63

    Google Scholar 

  • Bandani AR, Khambay BPS, Faull J, Newton R, Deadman M, Butt TM (2000) Production of efrapeptins by Tolypocladium species and evaluation of their insecticidal and antimicrobial properties. Mycol Res 104:537–544

    Article  CAS  Google Scholar 

  • Baskar K, Ignacimuthu S (2011) Bioefficacy of Violacein against Asian armyworm Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Saudi Soc Agric Sci 11:73–77

    Google Scholar 

  • Benhamon N (2004) Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agents of green, mold: a comparison with- the effect of chitosan. Phytopathology 94:693–670

    Article  Google Scholar 

  • Bhattacharyya A, Samal AC, Kar S (2004) Entomophagous fungus in pest management. News Letter 5:1–4

    Google Scholar 

  • Bidochka MJ, Khachatourians GG (1988) Regulation of extracellular protease in the fungus Beauveria bassiana. Exp Mycol 12:161–168

    Article  CAS  Google Scholar 

  • Broadway RM, Gary EH, Cornell Research Foundation, Inc (2000, May 30) Fungus and insect control with chitinolytic enzymes. US Patent 6,069,299

    Google Scholar 

  • Burges HD (1998) Formulation of microbial pesticides. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Butt TM (2002) Use of entomogenous fungi for the control of insect pests. In: Esser K, Bennett JW (eds) Mycota. Springer, Berlin, pp 111–134

    Google Scholar 

  • Butt TM, Copping L (2000) Fungal biological control agent. Pestic Outlook 11:186–191

    Article  Google Scholar 

  • Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey bee mediated infection of pollen beetle (Meligethes spp.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Technol 8:533–538

    Article  Google Scholar 

  • Butt TM, Goettel MS, Papierok B (1999) Directory of specialists involved in the development of fungi as biocontrol agents. Warley, West Midlands

    Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Introduction fungal biological control agents: progress, problems and potential. CAB International, Wallingford

    Book  Google Scholar 

  • Buttachon S, Angsumarn C, Winanda H, Anake K (2013) Acaricidal activity of Hypocrella raciborskii Zimm. (Hypocreales: Clavicipitaceae) crude extract and some pure compounds on Tetranychus urticae Koch (Acari: Tetranychidae). Afri J Microbiolo Res 7:577–585

    CAS  Google Scholar 

  • Carrillo D, Dunlap CA, Avery PB, Navarrete J, Duncan RE, Jackson MA, Behle RW, Cave RD, Crane J, Rooney AP, Pena JE (2015) Entomopathogenic fungi as biological control agents for the vector the laurel wilt disease, the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae). Biol Control 81:44–50

    Article  Google Scholar 

  • Charnley K, Richard MC, St. Leger RJ, Agriculture Genetics Company Ltd (1991January, 22) Preparations of protease enzymes derived from entomopathogenic fungi. US Patent 4,987,077

    Google Scholar 

  • Chen C, Li ZY, Feng MG (2008) Occurrence of entomopathogenic fungi in migratory alate aphids in Yunnan Province of China. Biol Control 53:317–326

    Google Scholar 

  • Cheraghi A, Behzad H, Mohammad SM (2013) Application of bait treated with the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin for the control of microcerotermes diversus Silv. Psyche 2013:5

    Google Scholar 

  • Chet T, Schichler H, Haran S, Appenheim AB (1993) Cloned chitinase and their role in biological control of plant pathogenic fungi. In: Proceedings of the international symposium on chitin enzymology. Senigalia, Italy, pp 47–48

    Google Scholar 

  • Cho EM, Kirkland BH, Holder DJ, Keyhani NO (2007) Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria bassiana (Cordyceps). Microbiology 153:3438–3447

    Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Copping LG (2004) The manual of biocontrol agents, british crop protection council. Crop Prot 23:275–285

    Article  Google Scholar 

  • De Bach P (1964) Biological control of insect pest and weeds. Chapman and Hall, London

    Google Scholar 

  • De Faria MR, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Desgranges C, Vergoignan C, Lereec A, Riba G, Durand A (1993) Use of solid state fermentation to produce Beauveria bassiana for the biological control of European corn borer. Biotechnol Adv 11:577–587

    Article  CAS  PubMed  Google Scholar 

  • Erler F, Ates AO (2015) Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the june beetle. J Insect Sci 15:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyal J, James FW, Grace WR, Co.-Conn (1994, November 1) Method for production and use of pathogenic fungal preparation for pest control. US Patent 5,360,607

    Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y (2007) Increased insect virulence in Beauveria bassiana strains over expressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang W, Pei Y, Bidochka MJ (2007) A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 153:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Scully LR, Zhang L, Pei Y, Bidochka MJ (2008) Implication of a regulator of G protein signalling (BbRGS1) in conidiation and conidial thermotolerance of the insect pathogenic fungus Beauveria bassiana. FEMS Microbiol Lett 279:146–156

    Article  CAS  PubMed  Google Scholar 

  • French-Constant RH, Daborn PJ, Goff L (2004) The genetics and genomics of insecticide resistance. Trends Genet 20:163–700

    Article  CAS  Google Scholar 

  • Gupta S, Montillor C, Hwang YS (1995) Isolation of novel beauvericin analogues from the fungus Beauveria bassiana. J Nat Prod 58:733–738

    Article  CAS  Google Scholar 

  • Hajek AE, Soper RS (1992) Temporal dynamics of Entomophaga maimaiga after death of gypsy moth (Lepidoptera: Lymantriidae) larval hosts. Environ Entomol 21:129–135

    Article  Google Scholar 

  • Hasan S, Bhamra AK, Sil K, Rajak RC, Sandhu SS (2002) Spore production of Metarhi-zium anisopliae (ENT-12) by solid state fermentation. J Ind Bot Soc 8:85–88

    Google Scholar 

  • Hasan S, Anis A, Abhinav P, Nausheen RK, Garima G (2013) Production of extracellular enzymes in the entomopathogenic fungus Verticillium lecanii. Bioinformation 9:238–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan AEM, Dillon RJ, Charnley AK (1989) Influence of accelerated germination of conidia of the pathogenicity of Metarhizium anisopliae for Manduca sexta. J Invert Patbol 54:277–279

    Article  Google Scholar 

  • Hawksworth D (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1431

    Article  Google Scholar 

  • Heydari A (2007) Biological control of Turfgrass fungal disease. In: Pessarakli M (ed) Turfgrass management and physiology. CRC Press, Boca Raton

    Google Scholar 

  • Heydari A, Mohammad P (2010) A review on biology control of fungal plant pathogen using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hu QB, Ren SX, An XC, Quain MH (2007) Insecticidal activity influence of destruxins on the pathogenicity of Paecilomyces javanicus against Spodoptera litura. J Appl Entomol 131:262–268

    Article  CAS  Google Scholar 

  • Humber RA (1997) Fungi: identification. In: Lacey L (ed) Manual of techniques in insect pathology. Academic, San Diego

    Google Scholar 

  • Islam MT, Yasuyuki H, Abhinandan D, Toshinki I, Satoshi T (2005) Suppression of damping-off-disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soil borne peronosporomycetes. Appl Environ Microbial 71:3786–3796

    Article  CAS  Google Scholar 

  • Jeffs LB, Khachatourians GG (1997) Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 35:1351–1356

    Article  CAS  PubMed  Google Scholar 

  • Jim McNeil (2011) Fungi for the biological control of insect pests fungi for the biological control of insect pests eXtension 4/4

    Google Scholar 

  • Kaufman PE, Reasor C, Rutz DA, Ketzis JK, Arends J (2005) Evaluation of Beauveria bassiana applications against adult house fly, Musca domestica, in commercial caged-layer poultry facilities in New York state. J Bio Conf 33:360–367

    Google Scholar 

  • Khachatourians GG (1986) Production and use of biological pest control agents. Tibtech 12:120–124

    Article  Google Scholar 

  • Khachatourians GG, Sohail SQ (2008) Entomopathogenic fungi. In: Brakhage AA, Zipfel PF (eds) Biochemistry and molecular biology, human and animal relationships. Springer, Berlin/Heidelberg

    Google Scholar 

  • Khan S, Lihua G, Yushanjiang M, Mahmut M, Dewen Q (2012) Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed 3:63–79

    Google Scholar 

  • Kibata GN (1996) Diamondback moth Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), a problem pest of Brassica crop in Kenya. In: Farrel G, Kibata GN (eds) Proceedings of the 1st biennial crop protection conference, Nairobi, Kenya

    Google Scholar 

  • Kodaira Y (1961) Biochemical studies on the muscardine fungi in the silkworms. J Fac Text Sci Technol Sinshu Univ Seric 5:1–68

    Google Scholar 

  • Koul O, Suresh W, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84

    Google Scholar 

  • Lacey LA, Goettel MS (1995) Current developments in microbial control of insect pests and 871 prospects for the early 21st century. Entomophaga 40:1–25

    Article  Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Valis P (2001) Insect pathogens as biological control agents: do they have future? Biol Control 21:230–224

    Article  Google Scholar 

  • Latge JP, Sampedro L, Brey P, Diaquin M (1987) Aggressiveness of Conidiobolus obscures against the pea aphid – influence of cuticular extracts on ballistospore germination of aggressive and nonaggressive strains. J Gen Microbiol 133:1987–1997

    Google Scholar 

  • Lecouna RE, Turica M, Tarocco F, Crespo DC (2005) Microbial control of Musca domestica (Diptera: Musciadae) with selected strains of Beauveria bassiana. J Med Entomol 42:332–336

    Article  Google Scholar 

  • Leland JE, Novozymes Biologicals Holidays A/S (2013, June 20) Bio-pesticide methods and compositions. US Patent US 20130156740A1

    Google Scholar 

  • Li W, Sheng C (2007) Occurrence and distribution of entomo-phthoralean fungi infecting aphids in mainland China. Biocon Sci Technol 17:433–439

    Article  Google Scholar 

  • Liu WZ, Boucias DG, McCoy CW (1995) Extraction and characterization of the insecticidal toxin hirsutellin A produced by Hirsutella thompsonii var. thompsonii. Expt Mycol 19:254–262

    Article  CAS  Google Scholar 

  • Lozano-Contreras MG, Myriam E, Catalina R, Hugo AL, Luis JG, Maria G (2007) Paecilomyces fumosoroseus blastospore production using liquid culture in a bioreactor. Afri J biotechnol 6:2095–2099

    Article  CAS  Google Scholar 

  • Mahr SER, Raymond A, Cloyd D, Clifford SS (2001) Biological control of insects and other pests of greenhouse crops. North central regional publication 581

    Google Scholar 

  • Mathew SO, Sandhu SS, Rajak RC (1998) Bioactivity of Nomuraea rileyi against Spilosoma obliqua: effect of dosage, temperature and relative humidity. J Indian Bot Soc 77:23–25

    Google Scholar 

  • Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993) The structures of bioactive cyclodepsipeptides, Beauveriollides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull Cheml Soc JPN 66:3041–3046

    Article  CAS  Google Scholar 

  • Moore D, Robson G, Trinci A (2011) Biochemistry and developmental biology of fungi. In: 21st Century guidebook to fungi. Cambridge University Press, Cambridge, pp 237–265

    Chapter  Google Scholar 

  • Mota-Sanchez D, Bills PS, Whalon ME, Wheeler WB (2002) Arthropod resistance to pesticides: status and overview. In: Wheeler WB (ed) Pesticides in agriculture and the environment. Marcel Dekker Inc, New York, pp 241–272

    Google Scholar 

  • Mustafa U, Kaur G (2009) Remove from marked records effects of carbon and nitrogen sources and ratio on the germination, growth and sporulation characteristics of Metarhizium anisopliae and Beauveria bassiana isolates. Afri J Agric Res 4:922–930

    Google Scholar 

  • Mwamburi LA, Laing MD, Miller RM (2010) Laboratory screening of insecticidal activities of Beauveria bassiana and Paecilomyces lilacinus against larval and adult house flies (Musca domestica L.) Afri Entomol 18:38–46

    Article  Google Scholar 

  • Namatame I, Tomoda H, Tabata N, Si SY, Omura S (1999) Structure elucidation of fungal Beauveriolide-III, a novel inhibitor of lipid droplet formation in mouse macrophages. J Antibiot 52:7–12

    Article  CAS  PubMed  Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49:413–422

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production – losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Padanad MS, Krishnaraj PU (2009) Pathogenicity of native entomopathogenic fungus Nomuraea rileyi against Spodoptera litura. Online Plant Health Prog. https://doi.org/10.1094/PHP-2009-0807-01-RS

  • Pandya U, Saraf M (2010) Application of fungi as a biocontrol agent and their biofertilizer potential in agriculture. J Adv Dev Res 1:90–99

    Google Scholar 

  • Patel CS (2011, August 18) Composition and method of preparation of fungal based bio insecticide from combination of Metarhizium anisopliae, Beauveria bassiana and Verticillium lecanii fungus with enzymes, fats and growth promoting molecules for controlling various foliage pest and soil borne insect. WO Patent 2011099022A1

    Google Scholar 

  • Pendland JC, Boucias DG (1986) Lactin binding characteristics of several entomogenous hyphomycetes. Possible relationship to insect hemagglutinisns. Mycologia 78:818–824

    Article  CAS  Google Scholar 

  • Perinotto WMS, Angelo IC, Golo PS, Camargo MG, Quinelato S, Santi L, Vainstein MH, da Silva WOB, Salles CMC, Bittencourt VREP (2014) Metarhizium anisopliae (Deuteromycetes: Moniliaceae) Pr1 activity: biochemical marker of fungal virulence in Rhipicephalus microplus (Acari: Ixodidae). Biocontrol Sci Technol:24, 123–132

    Google Scholar 

  • Prenerova E, Rostislay Z, Lubomír V, Frantisek W, Biology Centre As Cr, V.v.i., Eva Prenerova (2011 April, 27) Strain of entomopathogenic fungus Isaria fumosorosea ccm 8367 (ccefo.011.pfr) and the method for controlling insect and mite pests. European Patent 2313488A1

    Google Scholar 

  • Qazi SS, Khachatourians GG (2005) Insect pests of Pakistan and their management practices: prospects for the use of entomopathogenic fungi. Biopest Int 1:13–24

    Google Scholar 

  • Reineke A, Bischoff-Schaefer M, Rondot Y, Galidevara S, Hirsch J, Uma Devi K (2014) Microsatellite markers to monitor a commercialized isolate of the entomopathogenic fungus Beauveria bassiana in different environments: technical validation and first applications. J Biol Control 70:1–8

    Article  CAS  Google Scholar 

  • Roberts DW (1996) Toxins from the entomogenous fungus Metarhizium anisopliae II. Symptoms and detection in moribund host. J Invert Patbol 8:222–227

    Article  Google Scholar 

  • Roberts DW, St. Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    Article  CAS  PubMed  Google Scholar 

  • Rombach MC, Roberts DW, Aguda RM (1994) Pathogens of rice insects. In: Heinrichs EA (ed) Biology and management of rice insects. Wiley, New York, pp 613–655

    Google Scholar 

  • Sandhu SS (1993) Mode of entry of Beauveria bassiana in Helicoverpa armigera larvae. Natl Acad Sci Lett 16:133–135

    Google Scholar 

  • Sandhu SS (1995) Effect of physical factors on germination of entomopathogenic fungus Beauveria bassiana conidia. Natl Acad Sci Lett 18:1–5

    Google Scholar 

  • Sandhu SS, Rajak RC, Hasija SK (2000) Bioactivity of Metarhizium anisopliae against Teak skeletonizer. Microbes Agric Indus Environ 2000:115–124

    Google Scholar 

  • Sandhu SS, Kinghorn JR, Shiela EU, Rajak RC (2001) Transformation system of Beauveria bassiana and Metarhizium anisopliae using the nitrate reductase gene of Aspergillus niger. Indian J Exp Biol 39:650–653

    CAS  PubMed  Google Scholar 

  • Sandhu SS, Anil KS, Vikas B, Gunjan G, Priya B, Anil K, Sundeep J, Sharma AK, Sonal M (2012) Myco-biocontrol of insect pests: factors involved mechanism, and regulation. J Pathog 2012:1–10

    Article  Google Scholar 

  • Sharififard M, Mossadegh MS, Vazirian-zadhe B, Mahmoudabadi AZ (2011) Laboratory pathogenicity of entomopathogenic fungi, Beauveria bassiana (Bals) Vuill. and Metarhizium anisopliae (Metch.) Sorok. To larvae and adult of house fly, Musca domestica L. (Diptera: Muscidae). Asian J Bio Sci 4:128–137

    Article  Google Scholar 

  • Sharma K (2004) Bionatural management of pests in organic farming. Agrobios Newsl 2:296–325

    Google Scholar 

  • Silawat N, Sandhu SS, Rajak RC (2002) Development of hybrid by intergeneric protoplast fusion of Tolypocladium inflatum and Beauveria bassiana. J Basic Appl Mycol 1:98–100

    Google Scholar 

  • Smith RJ, Pekrul S, Grula EA (1981) Requirement for sequential enzymatic activities for penetration of the integument of the corn earworm (Heliothis zea). J Invert Pathol 38:335–344

    Article  CAS  Google Scholar 

  • Soman AG, Glor JB, Angawi RF, Wicklow DT, Dowd PF (2001) Vertilecanins: new phenopicolinic acid analogues from Verticillium lecanii. J Nat Prod 64:189–192

    Article  CAS  PubMed  Google Scholar 

  • St. Leger RJ, Wang C (2009) Entomopathogenic fungi and the genomic era. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens: molecular approaches and techniques. CABI, Wallingford, pp 365–400

    Chapter  Google Scholar 

  • St. Leger RJ, Durrands PK, Cooper RM, Charnley AK (1988) Regulation of production of proteolytic enzymes by the entomopathogenic fungus Metarhizium anisopliae. Arch Microbiol 150:413–416

    Article  CAS  Google Scholar 

  • St. Leger RJ, Goettel M, Roberts DW, Staples RC (1991) Preparation events during infection of host cuticle by Metarhizium anisopliae. J Invert Pathol 58:168–179

    Article  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide over expressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stimac JL, Roberto P, University of Florida Research Foundation Inc (1997, November 4) Controlling cockroaches, carpenter ants, and pharaoh ants using strains of Beauveria bassiana. US Patent 5,683,689A

    Google Scholar 

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735

    Article  Google Scholar 

  • Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura S (1977) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 25:2167–2170

    Article  Google Scholar 

  • Thakur R, Sandhu SS (2003) Development of transformation system for entomopathogenic fungus Metarhizium anisopliae (ENT 12) based on cnx-gene. Ind J Microbiol 43:187–192

    Google Scholar 

  • Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5:377–383

    Article  CAS  PubMed  Google Scholar 

  • Tuli HS, Sandhu SS, Kashyap D, Sharma AK (2014a) Optimization of extraction compounds and antimicrobial potential of a bioactive metabolite, Cordycepin from Cordyceps militaris. World J Phar Pharmac Sci 3:1525–1535

    Google Scholar 

  • Tuli HS, Sandhu SS, Sharma AK (2014b) Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 4:1–12

    Article  PubMed  Google Scholar 

  • Turner G (2000) Exploitation of fungal secondary metabolites old and new. Microbiol Today 27:118–120

    Google Scholar 

  • Tzean SS, Hsieh LS, Wu WJ (1997) Atlas of entomopathogenic fungi from Taiwan Council of Agriculture, Taiwan, ROC. p 214

    Google Scholar 

  • Vurro M, Zonno MC, Evidente A, Andolfi A, Montemurro P (2001) Enhancement of efficacy 836 of Ascochyta caulina to control Chenopodium album by use of phytotoxins and reduced rates 837 of herbicides. Biol Control 21:182–190

    Article  CAS  Google Scholar 

  • Wang C, St Leger RJ (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115

    Article  CAS  PubMed  Google Scholar 

  • Wang CS, Skrobek A, Butt TM (2004) Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 85:168–174

    Article  CAS  PubMed  Google Scholar 

  • Weiser J, Matha V (1988) Tolypin, a new insecticidal metabolite of fungi of the genus Tolypocladium. J Invertebr Pathol:51, 94–96

    Google Scholar 

  • Whright SP, Jackson MA, De Kock SL (2001) Production stabilization and formulation of fungal biological agents. In: Butt TM, Jacktion C, Magan N (eds) Fungi as biocontrol agents. CABI, Wallinford, pp 253–287

    Google Scholar 

  • Wilson BJ (1971) In: Ciegler A, Kadis S, Aje SJ (eds) Microbial toxins: a comprehensive treatise. Academic, New York, pp 288–289

    Google Scholar 

  • Xie L, Hongmei C, Jibin Y (2013) Conidia production by Beauveria bassiana on rice in solid state fermentation using tray bioreactors. Adv Mater Res 610:3478–3482

    Article  CAS  Google Scholar 

  • Yu J, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    Article  CAS  PubMed  Google Scholar 

  • Zain ME, Awaad AS, Razzak AA, Maitland DJ, Khamis NE, Sakhawy MA (2009) Secondary metabolites of Aureobasidium pullulans isolated from Egyptian soil and their biological activity. J Appl Sci Res 5:1582–1591

    CAS  Google Scholar 

  • Zain ME, Amani SA, Monerah RA, Ahmed MA, Reham ME (2013) Biological activity of fungal secondary metabolites. Int J Chem Appl Biol Sci 1:14–22

    Article  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungus Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Teechnol 17:553–596

    Article  Google Scholar 

Download references

Acknowledgment

The authors of this review would like to thank the Vice-Chancellor, R.D. University Jabalpur for his kind support and help. We would also like to thank the Head, Department of Biological Sciences, R.D. University, Jabalpur, India, for technical and linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sardul Singh Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandhu, S.S., Shukla, H., Aharwal, R.P., Kumar, S., Shukla, S. (2017). Efficacy of Entomopathogenic Fungi as Green Pesticides: Current and Future Prospects. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_17

Download citation

Publish with us

Policies and ethics