Skip to main content

Wonders of Microbes in Agriculture for Productivity and Sustainability

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

During the green revolution which we have witnessed in the 1970s, we became self-dependent for food production. The major outbreak of green revolution is deterioration of physical, chemical and biological properties of soil due to excessive use of agrochemicals to maximize crop yield. Presently, sustainability and health of soil are of great concern and that’s why people are looking for alternatives of agrochemicals. Organic amendments and microorganisms are now being harnessed for their efficient use as biofertilizers and biopesticides. Soil microorganisms interact with plant roots where they get nutrition from root exudates and degrading organic matter. Although beneficial microorganisms possess ability to deal with various environmental issues, their application in well-organized way to resolve environmental problems is yet to be realized. In this chapter, we will elaborate the importance of microbial technologies in agriculture for the larger benefit of the farming and scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells. Appl Biochem Biotechnol 39(1):27–40

    Article  Google Scholar 

  • Barea JM, Gryndler M, Lemanceau PH, Schuepp H, Azcon R (2002) The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhauser Verlag, Basel, pp 1–18

    Google Scholar 

  • Bhatt MA (2012) Production of Poly (3-Hydroxyalkanoates) by Azotobacter spp. utilizing agro-waste as substrate and its biodegradability in vitro- An M. Sc. Thesis submitted to Sardar Ptael University, V. V. Nagar, Gujarat

    Google Scholar 

  • Carvalho MF, Ferreira JR, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298

    Article  CAS  PubMed  Google Scholar 

  • Dabhi BK, Vyas RV, Shelat HN (2014) Use of banana waste for the production of cellulolytic enzymes under solid substrate fermentation using bacterial consortium. Int J Pure Appl Sci 3(1):1–9

    Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325:573–574

    Article  CAS  PubMed  Google Scholar 

  • Hinge VR, Patel BA, Vyas RV (2010) Differentiation among four Meloidogyne species from Gujarat by RAPD – PCR. Ind J Nematol 40(2):167–170

    Google Scholar 

  • http://aau.in/college-menu/department/765~815

  • http://agri.ikhedut.aau.in/1/fld/807

  • http://www.aau.in/business-planning-development-unitnaip-i

  • http://www.icar.org.in/node/5667

  • https://www.youtube.com/watch?v=m8hxJqR_3UI

  • Jani JJ, Vyas RV, Yadav DN (1993) A new Rickettsia Like Organism associated with white grubs. Curr Sci 65(9):720–721

    Google Scholar 

  • Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30:1845–1860

    Article  CAS  PubMed  Google Scholar 

  • Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 389–407

    Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kozhemyakov AP, Provorov NA, Zavalin AA, Shott PR (2004) Analysis of interactions between different barley and wheat cultivars with rhizospheric growth promoting bacteria on the variable nitrogen background. Agrokhimia 3:33–40

    Google Scholar 

  • Kupriyanov AA, Semenov AM, Van Bruggen AHC (2010) Transition of entheropathogenic and saprotrophic bacteria in the niche cycle: animals–excrement–soil–plants–animals. Biol Bull 3:263–267

    Article  Google Scholar 

  • Kushwah P, Vyas R, Jhala Y, Patel H (2013) Diversity of plastic degrading microorganisms and their appraisal on biodegradable plastic. Appl Ecol Environ Res 11(3):441–449

    Article  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YK (2003) Microorganisms and production of alternative energy. In: Kun LE (ed) Microbial biotechnology: principles and applications. World Scientific Publishing Co. Pte. Ltd, pp 655–670

    Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble AD, Ruaysoongnern S (2010) The nature of sustainable agriculture. In: Dixon R, Tilston E (eds) Soil microbiology and sustainable crop production. Springer, Berlin, pp 1–25

    Google Scholar 

  • Panpatte DG, Shelat HN, Jhala YK (2015a) Compatibility of biocontrol bacteria with Phyto-extracts. J Pure Appl Microbiol 9(4):3083–3087

    CAS  Google Scholar 

  • Panpatte DG, Shelat HN, Jhala YK, Darji VB, Parvez N, Pathak L, Khatri K (2015b) Isolation and characterization of native Pseudomonas fluorescens for biocontrol of Fusarium wilt in Greengram. Green Farming 6(1):127–132

    Google Scholar 

  • Panpatte DG, Shelat HN, Jhala YK, Dhole AM (2016) Inhibition of multiple fungal phyto-pathogens by biocontrol bacteria. Nat J Life Sci 13(1):29–31

    Google Scholar 

  • Parr JF, Hornick SB (1992) Agricultural use of organic amendments: a historical perspective. Am J Altern Agric 7:181–189

    Article  Google Scholar 

  • Patel KT (2014) Mass Production Technology of Azotobacter in Laboratory Fermentor on Agro-industrial Wastes with Assessment of Alginate and Poly-β-hydroxybutyrate (PHB) Production Potential- A Ph.D. thesis submitted to Anand Agricultural University, Anand, Gujarat

    Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume–rhizobia symbiosis. Genet Resour Crop Evol 50:89–99

    Article  CAS  Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162

    Article  CAS  Google Scholar 

  • Rojas A, Holguin G, Glick BR, Bashan Y (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181–187

    Article  CAS  PubMed  Google Scholar 

  • Sanguin H, Sarniguet A, Gazengel K, Moenne-Loccoz Y, Grundmann GL (2009) Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694–707

    Article  CAS  PubMed  Google Scholar 

  • Schimel J (2007) Soil microbiology, ecology, and biochemistry for the 21st century. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press, London

    Google Scholar 

  • Seckbach J (ed) (2002) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, p 850

    Google Scholar 

  • Shtark OY, Borisov AY, Zhukov VA, Provorov NA, Tikhonovich IA (2010) Intimate associations of beneficial soil microbes with host plants. In: Dixon R, Tiltson E (eds) Soil microbiology and sustainable crop production. Springer Science and Business Media, Berlin/Heidelberg, pp 119–196

    Chapter  Google Scholar 

  • Singh OV (2006) Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6(20):5481–5492

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London, pp 503–512

    Google Scholar 

  • Tanaka K, Kashiwagi N, Ogawa T (1988) Effects of light on the electrical output of bioelectrochemical fuelcells containingAnabaena variabilis M-2: Mechanism of the post- illumination burst. J Chem Technol Biotechnol 42:235–240

    Article  CAS  Google Scholar 

  • Umarao GS, Vyas RV, Ganguly AK (2002) Molecular characterization of Steinernema Thermophilum Ganguly & Singh (Nematoda: Steinernematidae). Int J Nematol 12(2):215–219

    Google Scholar 

  • van De Woestyne M, Gellens V, Anasi I, Verstraete W (1994) Anaerobic digestion and inter-regional recycling of organic soil supplements. In: Marchaim U, Ney G (eds) Sustainable rural environment and energy network (SREN) – biogas technology as an environmental solution to pollution, REUR technical series number 33. FAO, Rome

    Google Scholar 

  • Vance CP (1998) Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 509–530

    Google Scholar 

  • Vora MS, Shelat HN, Vyas RV (2008) Handbook of biofertilizers and microbial pesticides. Satish Serial Publishing House, Delhi

    Google Scholar 

  • Vyas RV, Dn Y, Patel RJ (1990) Studies on the efficacy of Beauveria brongniartii (Sacc). Petch against white grub. Ann Biol 6(2):123–128

    Google Scholar 

  • Vyas RV, Yadav DN, Patel RJ (1991a) Efficacy of bacillus popilliae var holotrichiae against white grub (Holotrichia Consanguinea). Indian J Agric Sci 61(1):80–81

    Google Scholar 

  • Vyas RV, Yadav DN, Patel RJ (1991b) Mass production of a entomogenous fungi Beauveria brongniartii on solid substrates. Indian J Exp Biol 29:795–797

    Google Scholar 

  • Vyas RV, Patel DB, Patel DJ, Patel BA (1995) Bio-efficacy of Paecilomyces lilacinus against Meloidgoyne incognita. Ind J Mycol Pl Pathol 25(1&2):131

    Google Scholar 

  • Vyas RV, Patel NS, Patel DJ (1999) Mass production technology for Entomopathogenic nematode Steinernema sp. Ind J Nematol 29:178–181

    Google Scholar 

  • Vyas RV, Maghodia AB, Patel BA, Patel DJ (2005) In vitro testing of Xenorhabdus metabolites against groundnut collar-rot fungus, Aspergillus niger. Int Arac News 25:34–36

    Google Scholar 

  • Vyas RV, Maghodia AB, Patel BA, Patel DJ (2006) Isolation of native Xenorhabdus bacteria from Steinernema spp. and role of their exo and endo toxic factors for management of root-knot nematodes (Meloidogyne spp.) on tomato. Indian J Nematol 36(2):241–246

    Google Scholar 

  • Vyas RV, Shelat HN, Vora MS (2008) Biofertilizers techniques for sustainable production of major crops for second green revolution in Gujarat – an overview. Green Farming 1:68–72

    Google Scholar 

  • Vyas RV, Shelat HN, Jhala YK (2010) Microbial pesticides – an alternative tool to combat insect pests in GOI organic farming. Org Farming News Lett 6(4):14–17

    Google Scholar 

  • Vyas RV, Singh B, Shelat HN and Shekh AM (2014) Present scenario & future prospects: AAU BPDU, approaches to promote agri-business by technology transfer and public-private partnerships for second green revolution. In: Handbook of Technology Transfer and Commercialization: Experiences of US and India. Michigan State University Press

    Google Scholar 

  • Waites MJ, Morgan NL, Rockey JS, Higton G (2001) Industrial microbiology: an introduction. Blackwell Science Ltd, p 288

    Google Scholar 

  • Wood N (2001) Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. Trend Plant Sci 6:501–502

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2257–2261

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Anand Agricultural University authorities, Vice Chancellor, Director of Research and Dean (Agri.) for all support like utilization of research information and accomplishments of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajababu V. Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vyas, R.V., Panpatte, D.G., Jhala, Y.K., Shelat, H.N. (2017). Wonders of Microbes in Agriculture for Productivity and Sustainability. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_1

Download citation

Publish with us

Policies and ethics