Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 611 Accesses

Abstract

This chapter presents a general and exact theory for diagnosis of total force and moment exerted to a generic body moving and deforming in a calorically perfect gas. The total force and moment consist of a longitudinal part due to compressibility and irreversible thermodynamics, and a transverse part due to shearing. The latter alone contains the entire force and moment in incompressible flow but is now modulated by the former. The theory represents a full extension of a unified incompressible diagnosis theory of the same type developed by Wu and coworkers to compressible flow, with Mach number ranging from low-speed to moderate supersonic flows. When combined with rapid developed computational fluid dynamics (CFD), the theory permits quantitative identification of various complex flow structures and processes responsible for the forces and moments, and thereby enables rational optimal configuration design and flow control. This theory is further confirmed by a numerical simulation of circular-cylinder flow in the range of free-stream Mach number \(M_\infty \) between 0.2 and 2.0. The drags contributed by longitudinal process (L-drag for short) and transverse process (T-drag for short) of the cylinder vary as \(M_\infty \) in different ways, of which the underlying physical mechanisms are analyzed. Moreover, each of L-force and T-force integrands contains a universal factor of local Mach number M. Our preliminary tests suggest that the possibility of finding new similarity rules for each force constituent could be quite promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, J.Z., Lu, X.Y., Zhuang, L.X.: Integral force acting on a body due to local flow structures. J. Fluid Mech. 576, 265–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, L.Q., Wu, J.Z., Shi, Y.P., Zhu, J.Y.: A dynamic counterpart of Lamb vector in viscous compressible aerodynamics. Fluid Dyn. Res. 46, 061417 (2014)

    Article  MathSciNet  Google Scholar 

  3. Liu, L.Q., Shi, Y.P., Zhu, J.Y., Su, W.D., Zou, S.F., Wu, J.Z.: Longitudinal-transverse aerodynamic force in viscous compressible complex flow. J. Fluid Mech. 756, 226–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lagerstrom, P.A., Cole, J.D., Trilling, L.: Problems in the theory of viscous compressible fluids. GALCIT Technical report 6 (1949)

    Google Scholar 

  5. Kovasznay, L.S.G.: Turbulence in supersonic flow. J. Aeronaut. Sci. 3, 657–674 (1953)

    Article  MATH  Google Scholar 

  6. Wu, T.Y.: Small perturbations in the unsteady flow of a compressible, viscous and heat-conducting fluid. J. Math. Phys. 35, 13–27 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chu, B.T., Kovasznay, L.S.G.: Non-linear iteractions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)

    Article  MathSciNet  Google Scholar 

  8. Pierce, A.D.: Acoustics: An Introduction to its Physical Principles and Applications. Acoustical Society of America, New York (1989)

    Google Scholar 

  9. Mao, F., Shi, Y.P., Wu, J.Z.: On a general theory for compressing process and aeroacoustics: linear analysis. Acta Mech. Sinica 26, 355–364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mao, F.: Multi-process theory of compressible flow. Ph.D. thesis, Peking University (2011, in Chinese)

    Google Scholar 

  11. Prandtl, L.: Theory of lifting surfaces. Part I. News Soc. Sci. Göttingen, Math.-Phys. Class 451–477 (1918, in German)

    Google Scholar 

  12. Saffman, P.G.: Vortex Dynamics. Cambridge University, Cambridge (1992)

    MATH  Google Scholar 

  13. Burgers, J.M.: On the resistance of fluids and vortex motion. Proc. R. Acad. Sci. Amst. 23, 774–782 (1920)

    Google Scholar 

  14. Wu, J.C.: Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432–441 (1981)

    Article  MATH  Google Scholar 

  15. Lighthill, M.J.: An Informal Introduction to Theoretical Fluid Mechanics. Clarendon, Oxford (1986)

    MATH  Google Scholar 

  16. von Kármán, Th, Sears, W.R.: Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5, 379–390 (1938)

    Article  MATH  Google Scholar 

  17. McCune, J.E., Tavares, T.S.: Perspective: unsteady wing theory – the Kármán/Sears legacy. J. Fluids Eng. 115, 548–560 (1993)

    Article  Google Scholar 

  18. Wu, T.Y.: A nonlinear theory for a flexible unsteady wing. J. Eng. Math. 58, 279–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  20. Wu, J.Z., Wu, H., Li, Q.S.: Boundary vorticity flux and engineering flow management. Adv. Appl. Math. Mech. 1, 353–366 (2009)

    MathSciNet  Google Scholar 

  21. Fiabane, L., Gohlke, M.M., Cadot, O.: Characterization of flow contributions to drag and lift of a circular cylinder using a volume expression of the fluid force. Euro. J. Mech. B/Fluids 30, 311–315 (2011)

    Article  MATH  Google Scholar 

  22. Yang, Y.T., Zhang, R.K., An, Y.R., Wu, J.Z.: Steady vortex force theory and slender-wing flow diagnosis. Acta Mech. Sinica 23, 609–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G.J., Lu, X.Y.: Force and power of flapping plates in a fluid. J. Fluid Mech. 712, 598–613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marongiu, C., Tognaccini, R., Ueno, M.: Lift and lift-induced drag computation by Lamb vector integration. AIAA J. 51, 1420–1430 (2013)

    Article  Google Scholar 

  25. Marongiu, C., Tognaccini, R.: Far-field analysis of the aerodynamic force by Lamb vector integrals. AIAA J. 48, 2543–2555 (2010)

    Article  Google Scholar 

  26. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vortical Flows. Springer, Berlin (2015)

    Book  Google Scholar 

  27. Oswatitsch, K.: Gas Dynamics. Academic, New York (1956)

    Google Scholar 

  28. Wu, J.Z., Wu, J.M.: Vorticity dynamics on boundaries. Adv. Appl. Mech. 32, 19–275 (1996)

    MATH  Google Scholar 

  29. Wu, J.Z., Wu, J.M., Wu, C.J.: A viscous compressible flow theory on the interaction between moving bodies and flow field in the \((\omega, \vartheta )\) framework. Fluid Dyn. Res. 3, 203–208 (1988)

    Article  Google Scholar 

  30. Wu, J.Z., Wu, J.M.: Interactions between a solid-surface and a viscous compressible flow-field. J. Fluid Mech. 254, 183–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J.Z., Lu, X.Y., Yang, Y.T., Zhang, R.K.: Vorticity dynamics in complex flow diagnosis and management. In: P.Y. Chou Memorial Lecture at 13th Asian Congress Fluid Mechanics, pp. 17–21 (2010)

    Google Scholar 

  32. Huang, G.C.: Unsteady vortical aerodynamics: theory and applications. Shanghai Jiaotong University, Shanghai (1994, in Chinese)

    Google Scholar 

  33. Kang, L.L., Liu, L.Q., Su, W.D., Wu, J.Z.: A minimum-domain impulse theory for unsteady aerodynamic force with discrete wake. Theor. Appl. Mech. Lett. (2017, accepted)

    Google Scholar 

  34. Chang, C.C., Su, J.Y., Lei, S.Y.: On aerodynamic forces for viscous compressible flow. Theor. Comput. Fluid Dyn. 10, 71–90 (1998)

    Article  MATH  Google Scholar 

  35. Luo, Y.B.: Boundary vorticity dynamics, derivative moment theory, and their applications in flow diagnosis and control. Master thesis, Peking University (2004)

    Google Scholar 

  36. Xu, C.Y., Chen, L.W., Lu, X.Y.: Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238–273 (2010)

    Article  MATH  Google Scholar 

  37. Mele, B., Tognaccini, R.: Aerodynamic force by Lamb vector integrals in compressible flow. Phys. Fluids 26, 056104 (2014)

    Article  Google Scholar 

  38. Liu, L.Q., Zhu, J.Y., Wu, J.Z.: Lift and drag in two-dimensional steady viscous and compressible flow. J. Fluid Mech. 784, 304–341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rational Mech. Anal. 2, 617–642 (1953)

    MathSciNet  MATH  Google Scholar 

  40. Sherman, F.S.: A low-density wind-tunnel study of shock structure and relaxation phenomena in gases. NACA Technical report 3298 (1955)

    Google Scholar 

  41. Mele, B., Ostieri, M., Tognaccini, R.: Aircraft lift and drag decomposition in transonic flows. J. Aircr. 1–12 (2017)

    Google Scholar 

  42. Lagerstrom, P.A.: Laminar Flow Theory. Princeton University, Princeton (1964)

    MATH  Google Scholar 

  43. Chang, C.C., Lei, S.Y.: On the sources of aerodynamic forces: steady flow around a cylinder or a sphere. Proc. R. Soc. Lond. A 452, 2369–2395 (1996)

    Article  MATH  Google Scholar 

  44. Thomas, J.L., Salas, M.D.: Far-field boundary conditions for transonic lifting solutions to the Euler equations. AIAA J. 24, 1074–1080 (1986)

    Article  Google Scholar 

  45. Xu, C.Y., Chen, L.W., Lu, X.Y.: Effect of mach number on transonic flow past a circular cylinder. Chin. Sci. Bull. 665, 1886–1893 (2009)

    MATH  Google Scholar 

  46. Prandtl, L.: On flows whose velocities are comparable to the velocity of sound. J. Aeronaut. Res. Inst. (Tokyo Imperial Univ.) 5, 25–34 (1930, in German)

    Google Scholar 

  47. Glauert, H.: The effect of compressibility on the lift of an aerofoil. Proc. R. Soc. Lond. A 118, 113–119 (1928)

    Article  MATH  Google Scholar 

  48. Ackeret, J.: Air forces on airfoils moving faster than sound. J. Aviation Eng. Mot. Airsh. Aeronaut. 16, 72–74 (1925, in German)

    Google Scholar 

  49. von Kármán, Th: The similarity law of transonic flow. J. Math. Phys. 16, 182–190 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tsien, H.S.: Two-dimensional subsonic flow of compressible fluids. J. Aeronaut. Sci. 6, 399–407 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  51. von Kármán, Th: Compressibility effects in aerodynamics. J. Aeronaut. Sci. 8, 337–356 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tsien, H.S.: Similarity laws of hypersonic flows. J. Math. Phys. Mass. Inst. Tech. 25, 247–251 (1946)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo-Qin Liu .

Appendix: Derivative Moment Transformation

Appendix: Derivative Moment Transformation

For self-contained, the derivative moment transformation (DMT) proposed by Wu et al. [19, pp. 700–701] is repeated here. This transformation has appeared in Chaps. 2 and 3 and will be applied to various cases of this chapter.

The one-dimensional prototype of DMT is the familiar integration by parts:

$$\begin{aligned} \int ^b_af(x) \mathrm {d} x = [xf(x)]^b_a-\int ^b_a x f'(x)\mathrm {d} x, \end{aligned}$$
(4.6.1)

which casts the integral of f(x) to that of the moment of its derivative, \(xf'(x)\), plus boundary term. This transformation not only makes the new integrand higher peak with narrower support, but also shows the location of the peak matters for the integral. Several DMT identities for higher-dimensional spaces used in this book are the followings.

Let V be a subset of \(\mathbf {R}^n\), where \(n=2,3\) is the spatial dimension, having a regular boundary \(\partial V\) and \({\varvec{f}}\) a vector field defined in V. The following integral identity is applicable:

$$\begin{aligned} \int _V {\varvec{f}}\mathrm {d} V = \frac{1}{n-1}\int _V {\varvec{x}}\times (\nabla \times {\varvec{f}}) \mathrm {d} V - \frac{1}{n-1} \int _{\partial V} {\varvec{x}}\times ({\varvec{n}}\times {\varvec{f}}) \mathrm {d} S, \end{aligned}$$
(4.6.2)

where \({\varvec{x}}\) is the position vector from an arbitrary fixed origin. For a vector field \(\phi {\varvec{n}}\), the following identity is also applicable:

$$\begin{aligned} \int _S \phi {\varvec{n}}\mathrm {d} S = -\frac{1}{n-1} \int _S {\varvec{x}}\times ({\varvec{n}}\times \nabla \phi ) \mathrm {d} S + \frac{1}{n-1} \oint _{\partial S} \phi {\varvec{x}}\times \mathrm {d} {\varvec{x}}, \end{aligned}$$
(4.6.3)

where S is a hypersurface of \(\mathbf {R}^n\) and \(\partial S\) is its boundary. In particular, for \(n=3\) there is

$$\begin{aligned} \int _V {\varvec{f}}\mathrm {d} V = - \int _V {\varvec{x}}(\nabla \cdot {\varvec{f}}) \mathrm {d} V + \int _{\partial V} {\varvec{x}}({\varvec{n}}\cdot {\varvec{f}}) \mathrm {d} S, \end{aligned}$$
(4.6.4)

and

$$\begin{aligned} \int _S {\varvec{n}}\times {\varvec{f}}\mathrm {d}S = - \int _S {\varvec{x}}\times [ ({\varvec{n}}\times \nabla ) \times {\varvec{f}}] \mathrm {d}S + \int _{\partial S} {\varvec{x}}\times (\mathrm {d} {\varvec{x}}\times {\varvec{f}}). \end{aligned}$$
(4.6.5)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, LQ. (2018). Diagnosis Theory of Arbitrary Domain. In: Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6223-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6223-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6222-3

  • Online ISBN: 978-981-10-6223-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics