Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter studies the lift and drag experienced by a body in a viscous, compressible and steady flow. By a rigorous linear far-field theory and the Helmholtz decomposition of velocity field, we prove that the KJ lift formula for 2D inviscid potential flow, Filon’s drag formula for 2D incompressible viscous flow, and Goldstein’s lift and drag formulas for 3D incompressible viscous flow are universally true for the whole field of viscous compressible flow in a wide range of Mach number, from subsonic to supersonic flows. Thus, the steady lift and drag are always exactly determined by the values of vector circulation \(\varvec{\varGamma }_\phi \) due to the longitudinal velocity and inflow \(Q_\psi \) due to the transverse velocity, respectively, no matter how complicated the near-field viscous flow surrounding the body might be. We call this result the unified force theorem (UF theorem for short). However, velocity potentials are not directly testable either experimentally or computationally, and hence neither is the UF theorem. Thus, a testable version of it is also derived, which holds in the linear far field. We call it the testable unified force formula (TUF formula for short). Due to its linear dependence on the vorticity, TUF formula is also valid for statistically stationary flow, including time-averaged turbulent flow. For 2D flow, some careful RANS simulations of the flow over a RAE-2822 airfoil with angle of attack \(\alpha = 2.31^\circ \) and \(5.0^\circ \), Reynolds number \(Re = 6.5\times 10^6\), and incoming flow Mach number \(M\in [0.1,2.0]\) is performed to examine the validity of the TUF formula. The computed Mach-number dependence of L and D and its underlying physics, as well as the physical implication of the theorem, are also addressed. These results strongly support and enrich the UF theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book a quantity is said to be physically observable if it can be directly tested either experimentally or computationally.

  2. 2.

    This technique was first introduced by Batchelor [39, p. 351] for incompressible flow but with different arguments.

References

  1. Kutta, W.: Lift forces in flowing fluids. Illus. Aeronaut. Commun. 3, 133–135 (1902, in German)

    Google Scholar 

  2. Jowkowski, N.E.: On annexed vortices. Proc. Phys. Sect. Nat. Sci. Soc. 13, 12–25 (1906, in Russian)

    Google Scholar 

  3. Filon, L.N.G.: The forces on a cylinder in a stream of viscous fluid. Proc. R. Soc. A 113, 7–27 (1926)

    Article  MATH  Google Scholar 

  4. Goldstein, S.: The forces on a solid body moving through viscous fluid. Proc. Roy. Soc. A 123, 216–225 (1929)

    Article  MATH  Google Scholar 

  5. Goldstein, S.: The forces on a solid body moving through viscous fluid. Proc. R. Soc. A 131, 198–208 (1931)

    Article  MATH  Google Scholar 

  6. Liu, L.Q., Zhu, J.Y., Wu, J.Z.: Lift and drag in two-dimensional steady viscous and compressible flow. J. Fluid Mech. 784, 304–341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, L.Q., Su, W.D., Kang, L.L., Wu, J.Z.: Lift and drag in three-dimensional steady viscous and compressible flow. Phys. Fluids (2017, submitted)

    Google Scholar 

  8. Bryant, L.W., Williams, D.H.: An investigation of the flow of air around an aerofoil of infinite span. Philos. Trans. R. Soc. A 225, 199–237 (1926)

    Article  Google Scholar 

  9. Taylor, G.I.: Note on the connection between the lift on an airfoil in a wind and the circulation round it. Philos. Trans. R. Soc. A 225, 238–245 (1926)

    Google Scholar 

  10. Sears, W.R.: Some recent developments in airfoil theory. AIAA J. 23, 490–499 (1956)

    MathSciNet  MATH  Google Scholar 

  11. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vortical Flows. Springer, Berlin (2015)

    Book  Google Scholar 

  12. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  13. Heaslet, M.A., Lomax, H.: Supersonic and transonic small perturbation theory. In: Sear, W.R. (ed.) General Theory of High Speed Aerodynamics, pp. 122–344. Princeton University Press, Princeton (1954)

    Google Scholar 

  14. Finn, R., Gilbarg, D.: Asymptotic behavior and uniqueness of plane subsonic flows. Commun. Pure Appl. Math. 10, 23–63 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finn, R., Gilbarg, D.: Uniqueness and the force formulas for plane subsonic flows. Trans. Am. Math. Soc. 88, 375–379 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lagerstrom, P.A.: Laminar Flow Theory. Princeton University Press, Princeton (1964)

    MATH  Google Scholar 

  17. Mele, B., Tognaccini, R.: Aerodynamic force by Lamb vector integrals in compressible flow. Phys. Fluids 26, 056104 (2014)

    Article  Google Scholar 

  18. Garstang, T.E.: The forces on a solid body in a stream of viscous fluid. Proc. R. Soc. A 236, 25–75 (1936)

    MATH  Google Scholar 

  19. Milne-Thomson, L.M.: Theoretical Hydrodynamics, 4th edn. Dover, New York (1968)

    Book  MATH  Google Scholar 

  20. Oswatitsch, K.: Gas Dynamics. Academic, New York (1956)

    Google Scholar 

  21. Tsien, H.S.: The equations of gas dynamics. In: Emmons, H.W. (ed.) Fundamentals of Gas Dynamics, pp. 1–63. Princeton University Press, Princeton (1958)

    Google Scholar 

  22. Theodorsen, Th.: The reaction on a body in a compressible fluid. J. Aeronaut. Sci. 4, 239–240 (1937)

    Google Scholar 

  23. Finn, R., Gilbarg, D.: Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations. Acta Math. 98, 265–296 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Imai, I.: On the asymptotic behaviour of viscous fluid flow at a great distance from a cylinderical body, with special reference to Filon’s paradox. Proc. R. Soc. A 208, 487–516 (1951)

    Article  MATH  Google Scholar 

  25. Chadwick, E.: The far-field Oseen velocity expansion. Proc. R. Soc. A 454, 2059–2082 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lagerstrom, P.A., Cole, J.D., Trilling, L.: Problems in the theory of viscous compressible fluids. GALCIT Technical report 6 (1949)

    Google Scholar 

  27. Pierce, A.D.: Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America, New York (1989)

    Google Scholar 

  28. Mao, F., Shi, Y.P., Wu, J.Z.: On a general theory for compressing process and aeroacoustics: linear analysis. Acta Mech. Sin. 26, 355–364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mao, F.: Multi-process theory of compressible flow. Ph.d. thesis, Peking University (2011, in Chinese)

    Google Scholar 

  30. Lighthill, M.J.: Viscosity effects in sound waves of finite amplitude. In: Batchelor, G.K., Davies, R.M. (eds.) Surveys in Mechanics, pp. 250–351. Cambridge University Press, Cambridge (1956)

    Google Scholar 

  31. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  32. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1928)

    MATH  Google Scholar 

  33. Lighthill, M.J.: Introduction. Boundary layer theory. In: Rosenhead, L. (ed.) Laminar Boundary Layers, pp. 46–113. Dover, New York (1963)

    Google Scholar 

  34. Lamb, H.: On the uniform motion of a sphere through a viscous fluid. Philos. Mag. 21, 112–121 (1911)

    Article  MATH  Google Scholar 

  35. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products (7ed). Elsevier, London (2007)

    Google Scholar 

  36. Babenko, K.I., Vasilév, M.M.: On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. J. Appl. Math. Mech. 37, 651–665 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mizumachi, R.: On the asymptotic behavior of incompressible viscous fluid motions past bodies. J. Math. Soc. Jpn. 36, 497–522 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cole, J.D., Cook, L.P.: Transonic Aerodynamics. North-Holland, New York (1986)

    MATH  Google Scholar 

  39. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  40. Liu, L.Q., Wu, J.Z., Shi, Y.P., Zhu, J.Y.: A dynamic counterpart of Lamb vector in viscous compressible aerodynamics. Fluid Dyn. Res. 46, 061417 (2014)

    Article  MathSciNet  Google Scholar 

  41. von Kármán, Th: Supersonic aerodynamics – principles and applications. J. Aeronaut. Sci. 14, 373–402 (1947)

    Google Scholar 

  42. Liepmann, H.W., Roshko, A.: Elements of Gasdynamics. Wiley, New York (1957)

    MATH  Google Scholar 

  43. Ferri, A.: Elements of Aerodynamics of Supersonic Flows. Macmillan Co., New York (1949)

    MATH  Google Scholar 

  44. Thomas, J.L., Salas, M.D.: Far-field boundary conditions for transonic lifting solutions to the Euler equations. AIAA J. 24, 1074–1080 (1986)

    Article  Google Scholar 

  45. Hafez, M., Wahba, E.: Simulations of viscous transonic flows over lifting airfoils and wings. Comput. Fluids 36, 39–52 (2007)

    Article  MATH  Google Scholar 

  46. Cook, P.H., Mcdonald, M.A., Firmin, M.C.P.: Aerofoil RAE 2822 — Pressure distributions, and boundary layer and wake measurements. AGARD-AR-138 (1979)

    Google Scholar 

  47. Wu, J.Z., Wu, J.M.: Interactions between a solid-surface and a viscous compressible flow-field. J. Fluid Mech. 254, 183–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu, L.Q., Shi, Y.P., Zhu, J.Y., Su, W.D., Zou, S.F., Wu, J.Z.: Longitudinal-transverse aerodynamic force in viscous compressible complex flow. J. Fluid Mech. 756, 226–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo-Qin Liu .

Appendix: The Calculations of Circulation and Inflow

Appendix: The Calculations of Circulation and Inflow

The circulation due to the longitudinal velocity and the inflow due to the transversal velocity are given by (3.3.27) and (3.3.28), respectively,

$$\begin{aligned} \varvec{\varGamma }_\phi= & {} - \frac{1}{\rho _0} \int _S (\varvec{n}\times \nabla ) (\varvec{F}\cdot \nabla G_\psi ) \text {d} S, \end{aligned}$$
(3.6.1a)
$$\begin{aligned} Q_\psi= & {} \frac{1}{\rho _0} \int _S (\varvec{n}\times \nabla )\cdot (\varvec{F}\times \nabla G_\psi ) \text {d} S, \end{aligned}$$
(3.6.1b)

with

$$\begin{aligned} \nabla G_\psi= & {} \frac{e^{-k(r-x)}}{4 \pi U r} \left( 1, -\frac{y}{r-x}, -\frac{z}{r-x} \right) . \end{aligned}$$
(3.6.2)

In fact, due to the exponential factor \(e^{-k(r-x)}\) in (3.6.2), (3.6.1b) can be reduced to a wake-plane integral with \(\varvec{n}= \varvec{e}_x\),

$$\begin{aligned} Q_\psi= & {} \frac{1}{\rho _0} \int _W (-\partial _z \varvec{e}_y + \partial _y \varvec{e}_z) \cdot (\varvec{F}\times \nabla G_\psi ) \text {d} S, \end{aligned}$$
(3.6.3)

which can more or less simplify our analysis.

Since (3.6.1) are linearly dependent on \(\varvec{F}\), we can estimate their results by assigning \(\varvec{F}\) with a specific value. Suppose \(\varvec{F}= D \varvec{e}_x\), then \(\varvec{\varGamma }_\phi \equiv \mathbf 0\) since \(\partial G_\psi /\partial x\) is regular due to (3.6.2). However, (3.6.3) reduces to

$$\begin{aligned} Q_\psi= & {} - \frac{D}{4\pi \rho _0 U} \int _S \left\{ \frac{\partial }{\partial y} \left[ \frac{y e^{-k(r-x)}}{r(r-x)} \right] + \frac{\partial }{\partial z} \left[ \frac{z e^{-k(r-x)}}{r(r-x)} \right] \right\} \text {d} S \nonumber \\= & {} \frac{D}{4\pi \rho _0 U} \int _W \frac{kr^2 + krx + x}{r^3} e^{-k(r-x)} \text {d} S =\frac{D}{\rho _0 U}. \end{aligned}$$
(3.6.4)

Due to the symmetry of y and z in (3.6.2), for the lift or side force case we only need to consider \(\varvec{F}= L \varvec{e}_z\) in (3.6.1a) or (3.6.3). In this case, (3.6.3) reduces to

$$\begin{aligned} Q_\psi= & {} \frac{L}{4\pi \rho _0 U} \int _W \frac{\partial }{\partial z} \left[ \frac{e^{-k(r-x)}}{r} \right] \text {d} y \text {d} z =0. \end{aligned}$$
(3.6.5)

However, (3.6.1a) needs more algebra, which can be simplified by letting S be a sphere surface with \(\varvec{n}= \varvec{e}_r\). Thus, in this situation (3.6.1a) reduces to

$$\begin{aligned} \varvec{\varGamma }_\phi = (0, \varGamma _{\phi y}, \varGamma _{\phi z}), \end{aligned}$$
(3.6.6)

where

$$\begin{aligned} \varGamma _{\phi y}= & {} \frac{L}{4\pi \rho _0 U} \int _S (\varvec{e}_y \times \varvec{e}_r) \cdot \nabla \left[ \frac{ze^{-k(r-x)}}{r(r-x)} \right] \text {d} S \nonumber \\= & {} \frac{L}{4\pi \rho _0 U} \int _S \left( \frac{z}{r} \frac{\partial }{\partial x} - \frac{x}{r}\frac{\partial }{\partial z} \right) \frac{ze^{-k(r-x)}}{r(r-x)} \text {d} S \nonumber \\= & {} \frac{L}{4\pi \rho _0 U} \int _S \frac{x^2+z^2 - r x + kz^2(r-x)}{r^2 (r-x)^2} e^{-k(r-x)} \text {d} S\nonumber \\= & {} \frac{L}{4\pi \rho _0 U} \int _0^{\pi } \!\!\!\! \int _0^{2\pi } \frac{\cos ^2\theta - \cos \theta + \sin ^2\theta \sin ^2\varphi [1 + kr (1-\cos \theta )]}{(1-\cos \theta )^2 e^{kr(1-\cos \theta )}} \sin \theta \text {d} \theta \text {d} \varphi \nonumber \\= & {} \frac{L}{4 \rho _0 U} \int _{-1}^{1} \frac{2t^2 + (1-t^2) - 2t + kr (1-t^2)(1-t)}{(1-t)^2 e^{kr(1-t)}} \text {d} t \nonumber \\= & {} \frac{L}{4 \rho _0 U} \int _{-1}^{1} [1 + kr (1+t)] e^{-kr(1-t)} \text {d} t = \frac{L}{2 \rho _0 U}, \end{aligned}$$
(3.6.7)

and

$$\begin{aligned} \varGamma _{\phi z}= & {} \frac{L}{4\pi \rho _0 U} \int _S (\varvec{e}_z \times \varvec{e}_r) \cdot \nabla \left[ \frac{ze^{-k(r-x)}}{r(r-x)} \right] \text {d}S \nonumber \\= & {} \frac{L}{4\pi \rho _0 U} \int _S \left( -\frac{y}{r} \frac{\partial }{\partial x} + \frac{x}{r}\frac{\partial }{\partial y} \right) \frac{ze^{-k(r-x)}}{r(r-x)} \text {d}S \nonumber \\= & {} -\frac{L}{4\pi \rho _0 U} \int _S \frac{1+k(r-x)}{r^2 (r-x)^2} y z e^{-k(r-x)} \text {d}S =0. \end{aligned}$$
(3.6.8)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, LQ. (2018). Far-Field Force Theory of Steady Flow. In: Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6223-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6223-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6222-3

  • Online ISBN: 978-981-10-6223-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics