Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 593 Accesses

Abstract

This chapter starts from the far-field behaviours of velocity field in externally-unbounded flow. We find that the well-known algebraic decay of disturbance velocity as derived kinematically is too conservative. Once the kinetics is taken into account by working on the fundamental solutions of far-field linearized Navier-Stokes equations, it is proven that the furthest far-field zone adjacent to the uniform fluid at infinity must be unsteady, viscous and compressible, where all disturbances degenerate to sound waves that decay exponentially. But this optimal rate does not exist in some commonly used simplified flow models, such as steady flow, incompressible flow and inviscid flow, because they actually work in true subspaces of the unbounded free space, which are surrounded by further far fields of different nature. This finding naturally leads to a zonal structure of externally-unbounded flow field. The significance of the zonal structure is demonstrated by its close relevance to existing theories of aerodynamic force and moment in external flows, including the removal of the difficulties or paradoxes inherent in the simplified models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The impulse meaning of \({\varvec{I}}_{\rho f}\) in compressible flow is lost since it can not be transformed to momentum integral through the DMT identity (2.2.52b).

References

  1. Liu, L.Q., Wu, J.Z., Shi, Y.P., Zhu, J.Y.: A dynamic counterpart of Lamb vector in viscous compressible aerodynamics. Fluid Dyn. Res. 46, 061417 (2014)

    Article  MathSciNet  Google Scholar 

  2. Liu, L.Q., Kang, L.L., Wu, J.Z.: Zonal structure of unbounded external-flow and aerodynamics. Fluid Dyn. Res. 49, 045508 (2017)

    Google Scholar 

  3. Kang, L.L., Liu, L.Q., Su, W.D., Wu, J.Z.: A minimum-domain impulse theory for unsteady aerodynamic force with discrete wake. Theor. Appl. Mech. Lett. (2017, accepted)

    Google Scholar 

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University, Cambridge (1967)

    MATH  Google Scholar 

  5. Wu, J.C.: Problems of General Viscous Flow. Applied Science Publishers, London (1982)

    MATH  Google Scholar 

  6. Cole, J.D., Cook, L.P.: Transonic Aerodynamics. North-Holland, New York (1986)

    MATH  Google Scholar 

  7. Liu, L.Q., Zhu, J.Y., Wu, J.Z.: Lift and drag in two-dimensional steady viscous and compressible flow. J. Fluid Mech. 784, 304–341 (2015)

    Google Scholar 

  8. Lagerstrom, P.A.: Laminar Flow Theory. Princeton University, Princeton (1964)

    MATH  Google Scholar 

  9. Lighthill, M.J.: Viscosity effects in sound waves of finite amplitude. In: Batchelor, G.K., Davies, R.M. (eds.) Surveys in Mechanics, pp. 250–351. Cambridge University, Cambridge (1956)

    Google Scholar 

  10. Lagerstrom, P.A., Cole, J.D., Trilling, L.: Problems in the Theory of Viscous Compressible Fluids. GALCIT Technical report 6 (1949)

    Google Scholar 

  11. Wu, T.Y.: Small perturbations in the unsteady flow of a compressible, viscous and heat-conducting fluid. J. Math. Phys. 35, 13–27 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pierce, A.D.: Acoustics: An Introduction to its Physical Principles and Applications. Acoustical Society of America, New York (1989)

    Google Scholar 

  13. Mao, F., Shi, Y.P., Wu, J.Z.: On a general theory for compressing process and aeroacoustics: linear analysis. Acta Mech. Sinica 26, 355–364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lighthill, M.J.: Waves in Fluids. Cambridge University, Cambridge (1978)

    MATH  Google Scholar 

  15. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University, New Haven (1928)

    MATH  Google Scholar 

  16. von Kármán, Th., Sears, W.R.: Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5, 379–390 (1938)

    Google Scholar 

  17. Wu, J.C.: Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432–441 (1981)

    Article  MATH  Google Scholar 

  18. Wu, J.C.: Elements of Vorticity Aerodynamics. Tsinghua University, Beijing (2005)

    Google Scholar 

  19. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics (2nd). Pergamon, New York (1987)

    Google Scholar 

  20. Saffman, P.G.: Vortex Dynamics. Cambridge University, Cambridge (1992)

    MATH  Google Scholar 

  21. Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564–587(1952)

    Google Scholar 

  22. Stokes, G.G.: On the effect of the internal friction of fluids on the motion. Trans. Cambridge Phil. Soc. 9, 8–106 (1851)

    Google Scholar 

  23. Basset, A.B.: A Treatise on Hydrodynamics. Deighton Bell, Cambridge (1888)

    MATH  Google Scholar 

  24. Boussinesq, J.V.: Analytical Theory of Heat. L’École Polytechnique, Paris (1903, in French)

    Google Scholar 

  25. Oseen, C.W.: Hydrodynamics. Academic Publishing Co., Leipzig (1927, in German)

    Google Scholar 

  26. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  27. Gatignol, R.: The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes-flow. J. Theor. Appl. Mech. 1, 143–160 (1983)

    MATH  Google Scholar 

  28. Parmar, M., Haselbacher, A., Balachandar, S.: Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106, 084501 (2011)

    Article  Google Scholar 

  29. Parmar, M., Haselbacher, A., Balachandar, S.: Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, L.Q., Shi, Y.P., Zhu, J.Y., Su, W.D., Zou, S.F., Wu, J.Z.: Longitudinal-transverse aerodynamic force in viscous compressible complex flow. J. Fluid Mech. 756, 226–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Burgers, J.M.: On the resistance of fluids and vortex motion. Proc. R. Acad. Sci. Amst. 23, 774–782 (1920)

    Google Scholar 

  32. Lighthill, M.J.: An Informal Introduction to Theoretical Fluid Mechanics. Clarendon, Oxford (1986)

    MATH  Google Scholar 

  33. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vortical Flows. Springer, Berlin (2015)

    Book  Google Scholar 

  34. Meng, X.G., Sun, M.: Aerodynamics and vortical structures in hovering fruitflies. Phys. Fluids 27, 031901 (2015)

    Article  Google Scholar 

  35. Andersen, A., Bohr, T., Schnipper, T., Walther, J.H.: Wake structure and thrust generation of a flapping foil in two-dimensional flow. J. Fluid Mech. 812, R4 (2016)

    Article  MathSciNet  Google Scholar 

  36. Li, G.J., Lu, X.Y.: Force and power of flapping plates in a fluid. J. Fluid Mech. 712, 598–613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, J.Z., Pan, Z.L., Lu, X.Y.: Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys. Fluids 17, 098102 (2005)

    Article  MATH  Google Scholar 

  38. Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  39. Huang, G.C.: Unsteady Vortical Aerodynamics: Theory and Applications. Shanghai Jiaotong University, Shanghai (1994, in Chinese)

    Google Scholar 

  40. Iima, M.: A paradox of hovering insects in two-dimensional space. J. Fluid Mech. 617, 207–229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Noca, F., Shiels, D., Jeon, D.: A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluids Struct. 13, 551–578 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo-Qin Liu .

Appendix: A General Theorem About Fundamental Solution

Appendix: A General Theorem About Fundamental Solution

For self-contained, a general theorem about fundamental solution first given by Lagerstrom et al. [10] is repeated here. This theorem will be applied to various cases in this chapter and Chap. 3.

The theorem is derived for solutions defined in an n-dimensional vector space \(\mathbf {R}^n\) whose points are denoted by \({\varvec{x}},{\varvec{\xi }}\). Let \(\mathbf {M}_1\) and \(\mathbf {M}_2\) be two linear differential matrix operators defined on vector function over \(\mathbf {R}^n\). Then the problem is the determination of the fundamental matrix (tensor) \(\mathbf {G}({\varvec{x}},{\varvec{\xi }})\) for the differential equation

$$\begin{aligned} (a\mathbf {M}_1-b\mathbf {M}_2-k^2\mathbf {I}) \cdot {\varvec{u}}= - {\varvec{f}}({\varvec{x}}), \end{aligned}$$
(2.5.1)

where a, b, k are constants, \({\varvec{f}}({\varvec{x}})\) is a given vector function defined over \(\mathbf {R}^n\) and vanishing suitably at infinity. The solution \({\varvec{u}}({\varvec{x}})\) to (2.5.1) is also a vector function and the fundamental solution satisfying homogeneous boundary conditions is

(2.5.2)

Linear Differential System Theorem. If \(\mathbf {M}_1\) and \(\mathbf {M}_2\) are linear differential matrix operators such that

$$\begin{aligned} \mathbf {M}_1 \cdot \mathbf {M}_2 = \mathbf {M}_2 \cdot \mathbf {M}_1 = \mathbf 0, \end{aligned}$$
(2.5.3a)

and

$$\begin{aligned} \mathbf {M}_1 - \mathbf {M}_2 = L\mathbf{{I}}, \end{aligned}$$
(2.5.3b)

where

$$\begin{aligned} \mathbf{{I}}= & {} n\text {-dimensional unit matrix}, \end{aligned}$$
(2.5.3c)
$$\begin{aligned} L= & {} \text {a scalar linear differential operator}, \end{aligned}$$
(2.5.3d)

then the fundamental solution \(\mathbf {G}({\varvec{x}},{\varvec{\xi }})\) of (2.5.1) is given by

$$\begin{aligned} \mathbf {G}({\varvec{x}},{\varvec{\xi }}) = \frac{1}{k^2} \left( \mathbf {M}_1 g_{\sqrt{\frac{k^2}{a}}} - \mathbf {M}_2 g_{\sqrt{\frac{k^2}{b}}} \right) , \end{aligned}$$
(2.5.4)

where \(g_k({\varvec{x}},{\varvec{\xi }})\) is the fundamental solution of the scalar differential equation formed with L,

$$\begin{aligned} (L-k^2) {\varvec{v}}= -{\varvec{f}}({\varvec{x}}). \end{aligned}$$
(2.5.5)

Here \(g_k({\varvec{x}},{\varvec{\xi }})\) is defined, in the usual way, by the requirement that \({\varvec{v}}({\mathbf {x}})\) satisfying (2.5.5) and homogenous boundary conditions be given by

$$\begin{aligned} {\varvec{v}}({\varvec{x}}) = \int _{\mathbf {R}^n} g_k({\varvec{x}},{\varvec{\xi }}) {\varvec{f}}({\varvec{\xi }}) \mathrm {d} {\varvec{\xi }}. \end{aligned}$$
(2.5.6)

The theorem will now be proved. In the proof it is convenient to use the fact that

$$\begin{aligned} L g_0 = 0 \end{aligned}$$
(2.5.7)

in order to represent \(\mathbf {G}\) in another form. We may write

$$\begin{aligned} \mathbf {G}({\varvec{x}},{\varvec{\xi }}) = \frac{1}{a}\mathbf {M}_1 U_1 - \frac{1}{b} \mathbf {M}_2 U_2, \end{aligned}$$
(2.5.8a)

when we define

$$\begin{aligned} U_1 = \frac{a}{k^2} \left( g_{\sqrt{\frac{k^2}{a}}} - g_0 \right) , \quad U_2 = \frac{b}{k^2} \left( g_{\sqrt{\frac{k^2}{b}}} - g_0 \right) . \end{aligned}$$
(2.5.8b)

This is equivalent to (2.5.4). \(U_1\) and \(U_2\) are now regular at \({\varvec{x}}={\varvec{\xi }}\) because the singularity of \(g_k\) is independent of k.

Proof

The theorem will be proved if it is shown that

$$\begin{aligned} (a\mathbf {M}_1-b\mathbf {M}_2-k^2\mathbf {I}) \cdot \int _{\mathbf {R}^n} \mathbf {G}({\varvec{x}},{\varvec{\xi }}) \cdot {\varvec{f}}({\varvec{\xi }}) \mathrm {d} {\varvec{\xi }}= - {\varvec{f}}({\varvec{x}}), \end{aligned}$$
(2.5.9a)

which is equivalent to (2.5.2). Using the second form of \(\mathbf {G}\) (2.5.8) we may transform the equation (2.5.9a) to be proved by taking the operators \(\mathbf {M}_1\) and \(\mathbf {M}_2\) in \(\mathbf {G}\) outside the integral sign. This is allowed because \(U_1\) and \(U_2\) are regular for all \({\varvec{x}}\). Thus

$$\begin{aligned} {\begin{matrix} &{} \left( \mathbf {M}_1^2 - \frac{k^2}{a}\mathbf {M}_1\right) \cdot \int _{\mathbf {R}^n} U_1({\varvec{x}},{\varvec{\xi }}) {\varvec{f}}({\varvec{\xi }}) \mathrm {d} {\varvec{\xi }}\\ -&{} \left( -\mathbf {M}_2^2 - \frac{k^2}{b}\mathbf {M}_2\right) \cdot \int _{\mathbf {R}^n} U_2({\varvec{x}},{\varvec{\xi }}) {\varvec{f}}({\varvec{\xi }}) \mathrm {d} {\varvec{\xi }}= -{\varvec{f}}, \end{matrix}} \end{aligned}$$
(2.5.9b)

where we have used (2.5.3). It also follows from (2.5.3) that

$$\begin{aligned} \mathbf {M}_1^2 = L\mathbf {M}_1, \quad \mathbf {M}_2^2 = -L\mathbf {M}_2, \end{aligned}$$

so that the left hand side of (2.5.9b) may be transformed as follows:

$$\begin{aligned}&\mathbf {M}_1 \left( L-\frac{k^2}{a} \right) \cdot \int _{\mathbf {R}^n} U_1 {\varvec{f}}\mathrm {d} {\varvec{\xi }}- \mathbf {M}_2 \left( L-\frac{k^2}{b} \right) \cdot \int _{\mathbf {R}^n} U_2 {\varvec{f}}\mathrm {d} {\varvec{\xi }}\\= & {} \frac{a}{k^2}\mathbf {M}_1 \cdot \left[ \left( L-\frac{k^2}{a} \right) \int _{\mathbf {R}^n} g_{\sqrt{ \frac{k^2}{a} } } {\varvec{f}}\mathrm {d} {\varvec{\xi }}- L \int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}\right] + \mathbf {M}_1 \cdot \int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}\\&-\frac{b}{k^2}\mathbf {M}_2 \cdot \left[ \left( L-\frac{k^2}{b} \right) \int _{\mathbf {R}^n} g_{\sqrt{ \frac{k^2}{b} } } {\varvec{f}}\mathrm {d} {\varvec{\xi }}- L \int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}\right] - \mathbf {M}_2 \cdot \int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}\\= & {} \frac{a}{k^2}\mathbf {M}_1 \cdot (-{\varvec{f}}+ {\varvec{f}}) - \frac{b}{k^2}\mathbf {M}_2 \cdot (-{\varvec{f}}+ {\varvec{f}}) + (\mathbf {M}_1 - \mathbf {M}_2) \cdot \int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}. \end{aligned}$$

Thus

$$\begin{aligned} (\mathbf {M}_1 - \mathbf {M}_2) \cdot \int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}\equiv L\int _{\mathbf {R}^n} g_{0} {\varvec{f}}\mathrm {d} {\varvec{\xi }}= -{\varvec{f}}, \end{aligned}$$
(2.5.10)

which proves (2.5.9a) and hence the theorem.

\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, LQ. (2018). Far-Field Asymptotics and Zonal Structure of Theoretical Flow Models. In: Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible External Flows. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6223-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6223-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6222-3

  • Online ISBN: 978-981-10-6223-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics