Skip to main content

Introduction

  • Chapter
  • First Online:
Robotic Tactile Perception and Understanding

Abstract

For robots, tactile perception is a key function utilized to obtain information from environment. Unlike vision sensors, tactile sensors can directly measure various physical properties of objects and the environment. Similarly, humans also use touch sensory receptors as an important approach to perceive and interact with the environment. In this chapter, a detailed discussion associated with tactile object recognition is presented. Current studies on tactile object recognition are divided into three sub-categories, and detailed analyses are provided. In addition, some advanced topics such as visual–tactile fusion, exploratory procedure, and datasets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.amazonrobotics.com/site/binaries/content/assets/amazonrobotics/pdfs/2015-apc-summary.pdf.

  2. 2.

    This image is adopted from the website http://robohub.org/team-rbo-from-berlin-wins-amazon-picking-challenge-convincingly/.

  3. 3.

    http://www.rhgm.org/activities/competition_iros2016/competition_iros_summary.pdf.

  4. 4.

    https://roboticsenseoftouchws.wordpress.com/.

  5. 5.

    https://sites.google.com/view/rss17ts/overview.

  6. 6.

    https://sites.google.com/site/iros17softhaptic/.

References

  1. Abderrahmane, Z., Ganesh, G., Cherubini, A., Crosnier, A.: Zero-shot object recognition based on haptic attributes (2017)

    Google Scholar 

  2. Aggarwal, A., Kampmann, P., Lemburg, J., Kirchner, F.: Haptic object recognition in underwater and deep-sea environments. J. Field Robot. 32(1), 167–185 (2015)

    Article  Google Scholar 

  3. Allen, P.K., Roberts, K.S.: Haptic object recognition using a multi-fingered dextrous hand. In: Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on, pp. 342–347 (1989)

    Google Scholar 

  4. Alt, N., Steinbach, E.: Navigation and manipulation planning using a visuo-haptic sensor on a mobile platform. IEEE Trans. Instrum. Meas. 63(11), 2570–2582 (2014)

    Article  Google Scholar 

  5. Argall, B.D., Billard, A.G.: A survey of tactile human-robot interactions. Robot. Auton. Syst. 58(10), 1159–1176 (2010)

    Article  Google Scholar 

  6. Asif, U., Bennamoun, M., Sohel, F.A.: Rgb-d object recognition and grasp detection using hierarchical cascaded forests. IEEE Trans, Robot (2017)

    Google Scholar 

  7. Baishya, S.S., Bäuml, B.: Robust material classification with a tactile skin using deep learning. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pp. 8–15 (2016)

    Google Scholar 

  8. Bekiroglu, Y., Detry, R., Kragic, D.: Learning tactile characterizations of object-and pose-specific grasps. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp. 1554–1560 (2011)

    Google Scholar 

  9. Bekiroglu, Y., Laaksonen, J., Jorgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Robot. 27(3), 616–629 (2011)

    Article  Google Scholar 

  10. Bhattacharjee, T., Shenoi, A.A., Park, D., Rehg, J.M., Kemp, C.C.: Combining tactile sensing and vision for rapid haptic mapping. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 1200–1207 (2015)

    Google Scholar 

  11. Bjorkman, M., Bekiroglu, Y., Hogman, V., Kragic, D.: Enhancing visual perception of shape through tactile glances. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 3180–3186 (2013)

    Google Scholar 

  12. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesisła survey. IEEE Trans. Robot. 30(2), 289–309 (2014)

    Article  Google Scholar 

  13. Boshra, M., Zhang, H.: Localizing a polyhedral object in a robot hand by integrating visual and tactile data. Pattern Recognit. 33(3), 483–501 (2000)

    Article  Google Scholar 

  14. Burka, A., Hu, S., Helgeson, S., Krishnan, S., Gao, Y., Hendricks, L.A., Darrell, T., Kuchenbecker, K.J.: Proton: A visuo-haptic data acquisition system for robotic learning of surface properties. In: Multisensor Fusion and Integration for Intelligent Systems (MFI), 2016 IEEE International Conference on, pp. 58–65 (2016)

    Google Scholar 

  15. Burka, A., Kuchenbecker, K.J.: How much haptic surface data is enough? (2017)

    Google Scholar 

  16. Cao, L., Kotagiri, R., Sun, F., Li, H., Huang, W., Aye, Z.M.M.: Efficient spatio-temporal tactile object recognition with randomized tiling convolutional networks in a hierarchical fusion strategy. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3337–3345. AAAI Press (2016)

    Google Scholar 

  17. Chathuranga, D.S., Wang, Z., Noh, Y., Nanayakkara, T., Hirai, S.: Robust real time material classification algorithm using soft three axis tactile sensor: evaluation of the algorithm. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 2093–2098 (2015)

    Google Scholar 

  18. Chebotar, Y., Hausman, K., Su, Z., Molchanov, A., Kroemer, O., Sukhatme, G., Schaal, S.: Bigs: Biotac grasp stability dataset. In: ICRA 2016 Workshop on Grasping and Manipulation Datasets (2016)

    Google Scholar 

  19. Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G.S., Schaal, S.: Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pp. 1960–1966. IEEE (2016)

    Google Scholar 

  20. Cheng, Y., Su, C., Jia, Y., Xi, N.: Data correlation approach for slippage detection in robotic manipulations using tactile sensor array. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 2717–2722 (2015)

    Google Scholar 

  21. Chitta, S., Sturm, J., Piccoli, M., Burgard, W.: Tactile sensing for mobile manipulation. IEEE Trans. Robot. 27(3), 558–568 (2011)

    Article  Google Scholar 

  22. Chu, V., McMahon, I., Riano, L., McDonald, C.G., He, Q., Perez-Tejada, J.M., Arrigo, M., Darrell, T., Kuchenbecker, K.J.: Robotic learning of haptic adjectives through physical interaction. Robot. Auton. Syst. 63, 279–292 (2015)

    Article  Google Scholar 

  23. Cockburn, D., Roberge, J.P., Le, T.H.L., Maslyczyk, A., Duchaine, V.: Grasp stability assessment through unsupervised feature learning of tactile images. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE (2017)

    Google Scholar 

  24. Corradi, T., Hall, P., Iravani, P.: Bayesian tactile object recognition: learning and recognising objects using a new inexpensive tactile sensor. In: Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 3909–3914 (2015)

    Google Scholar 

  25. Culbertson, H., Lopez Delgado, J.J., Kuchenbecker, K.J.: The penn haptic texture toolkit for modeling, rendering, and evaluating haptic virtual textures (2014)

    Google Scholar 

  26. Dahiya, R.S., Metta, G., Cannata, G., Valle, M.: Guest editorial special issue on robotic sense of touch. IEEE Trans. Robot. 27(3), 385–388 (2011)

    Article  Google Scholar 

  27. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensingłfrom humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  28. Dahiya, R.S., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.J.: Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 13(11), 4121–4138 (2013)

    Article  Google Scholar 

  29. Dallaire, P., Giguère, P., Émond, D., Chaib-Draa, B.: Autonomous tactile perception: a combined improved sensing and bayesian nonparametric approach. Robot. Auton. Syst. 62(4), 422–435 (2014)

    Article  Google Scholar 

  30. Dang, H.: Stable and semantic robotic grasping using tactile feedback (2013)

    Google Scholar 

  31. Decherchi, S., Gastaldo, P., Dahiya, R.S., Valle, M., Zunino, R.: Tactile-data classification of contact materials using computational intelligence. IEEE Trans. Robot. 27(3), 635–639 (2011)

    Article  Google Scholar 

  32. Denei, S., Maiolino, P., Baglini, E., Cannata, G.: On the development of a tactile sensor for fabric manipulation and classification for industrial applications. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 5081–5086 (2015)

    Google Scholar 

  33. Drimus, A., Kootstra, G., Bilberg, A., Kragic, D.: Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 62(1), 3–15 (2014)

    Article  Google Scholar 

  34. van Erp, J.B., van Veen, H.A.: Touch down: the effect of artificial touch cues on orientation in microgravity. Neurosci. Lett. 404(1), 78–82 (2006)

    Article  Google Scholar 

  35. Falco, P., Lu, S., Cirillo, A., Natale, C., Pirozzi, S., Lee, D.: Cross-modal visuo-tactile object recognition using robotic active exploration

    Google Scholar 

  36. Gao, Y., Hendricks, L.A., Kuchenbecker, K.J., Darrell, T.: Deep learning for tactile understanding from visual and haptic data. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 536–543 (2016)

    Google Scholar 

  37. Gemici, M.C., Saxena, A.: Learning haptic representation for manipulating deformable food objects. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 638–645 (2014)

    Google Scholar 

  38. Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P.K.: The columbia grasp database. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pp. 1710–1716 (2009)

    Google Scholar 

  39. Güler, P., Bekiroglu, Y., Gratal, X., Pauwels, K., Kragic, D.: What’s in the container? classifying object contents from vision and touch. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 3961–3968 (2014)

    Google Scholar 

  40. Henshaw, C.G.: Touch sensing for space robotics. Aerospace Conference, 2012 IEEE, pp. 1–13 (2012)

    Google Scholar 

  41. Heyneman, B., Cutkosky, M.R.: Biologically inspired tactile classification of object-hand and object-world interactions. In: Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on, pp. 167–173 (2012)

    Google Scholar 

  42. Hollis, B., Patterson, S., Trinkle, J.: Compressed sensing for scalable robotic tactile skins (2017). arXiv:1705.05247

  43. van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.: Stable reinforcement learning with autoencoders for tactile and visual data. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pp. 3928–3934. IEEE (2016)

    Google Scholar 

  44. Hsiao, K., Kaelbling, L., Lozano-Pérez, T.: Task-driven tactile exploration (2010)

    Google Scholar 

  45. Hughes, D., Krauthammer, A., Correll, N.: Recognizing social touch gestures using recurrent and convolutional neural networks. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE (2017)

    Google Scholar 

  46. Ilonen, J., Bohg, J., Kyrki, V.: Fusing visual and tactile sensing for 3-d object reconstruction while grasping. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 3547–3554 (2013)

    Google Scholar 

  47. Izatt, G., Mirano, G., Adelson, E., Tedrake, R.: Tracking objects with point clouds from vision and touch

    Google Scholar 

  48. Jamali, N., Sammut, C.: Majority voting: Material classification by tactile sensing using surface texture. IEEE Trans. Robot. 27(3), 508–521 (2011)

    Article  Google Scholar 

  49. Jin, M., Gu, H., Fan, S., Zhang, Y., Liu, H.: Object shape recognition approach for sparse point clouds from tactile exploration. In: Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on, pp. 558–562 (2013)

    Google Scholar 

  50. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  51. Kaboli, M., Walker, R., Cheng, G.: Re-using prior tactile experience by robotic hands to discriminate in-hand objects via texture properties. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 2242–2247. IEEE (2016)

    Google Scholar 

  52. Kappassov, Z., Corrales, J.A., Perdereau, V.: Tactile sensing in dexterous robot hands. Robot. Auton. Syst. 74, 195–220 (2015)

    Article  Google Scholar 

  53. Kim, J., Forsythe, S.: Adoption of sensory enabling technology for online apparel shopping. Eur. J. Mark. 43(9/10), 1101–1120 (2009)

    Article  Google Scholar 

  54. Kroemer, O., Lampert, C.H., Peters, J.: Learning dynamic tactile sensing with robust vision-based training. IEEE Trans. Robot. 27(3), 545–557 (2011)

    Article  Google Scholar 

  55. Krug, R., Lilienthal, A.J., Kragic, D., Bekiroglu, Y.: Analytic grasp success prediction with tactile feedback. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 165–171. IEEE (2016)

    Google Scholar 

  56. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 1817–1824 (2011)

    Google Scholar 

  57. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987)

    Article  Google Scholar 

  58. Lee, M.H., Nicholls, H.R.: Review article tactile sensing for mechatronicsła state of the art survey. Mechatronics 9(1), 1–31 (1999)

    Article  Google Scholar 

  59. Lester, D.H., Forman, A.M., Loyd, D.: Internet shopping and buying behavior of college students. Serv. Mark. Q. 27(2), 123–138 (2006)

    Article  Google Scholar 

  60. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. In: The International Journal of Robotics Research, p. 0278364917710318 (2016)

    Google Scholar 

  61. Li, R., Adelson, E.H.: Sensing and recognizing surface textures using a gelsight sensor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1241–1247 (2013)

    Google Scholar 

  62. Liarokapis, M.V., Calli, B., Spiers, A.J., Dollar, A.M.: Unplanned, model-free, single grasp object classification with underactuated hands and force sensors. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 5073–5080 (2015)

    Google Scholar 

  63. Liu, H., Song, X., Nanayakkara, T., Seneviratne, L.D., Althoefer, K.: A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 1410–1415 (2012)

    Google Scholar 

  64. Liu, H., Yu, Y., Sun, F., Gu, J.: Visual-tactile fusion for object recognition. IEEE Trans. Autom. Sci. Eng. 14(2), 996–1008 (2017)

    Article  Google Scholar 

  65. Luo, S., Mou, W., Althoefer, K., Liu, H.: Localizing the object contact through matching tactile features with visual map. In: Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 3903–3908 (2015)

    Google Scholar 

  66. Luo, S., Mou, W., Althoefer, K., Liu, H.: Novel tactile-sift descriptor for object shape recognition. IEEE Sens. J. 15(9), 5001–5009 (2015)

    Article  Google Scholar 

  67. Ma, R., Liu, H., Sun, F., Yang, Q., Gao, M.: Linear dynamic system method for tactile object classification. Sci. China Inf. Sci. 57(12), 1–11 (2014)

    Google Scholar 

  68. Madry, M., Bo, L., Kragic, D., Fox, D.: St-hmp: unsupervised spatio-temporal feature learning for tactile data. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 2262–2269 (2014)

    Google Scholar 

  69. Maldonado, A., Alvarez, H., Beetz, M.: Improving robot manipulation through fingertip perception. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 2947–2954 (2012)

    Google Scholar 

  70. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  71. Nagatani, T., Noda, A., Hirai, S., et al.: What can be inferred from a tactile arrayed sensor in autonomous in-hand manipulation? In: Automation Science and Engineering (CASE), 2012 IEEE International Conference on, pp. 461–468 (2012)

    Google Scholar 

  72. Navarro, S.E., Gorges, N., Wörn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic object recognition for multi-fingered robot hands. In: Haptics Symposium (HAPTICS), 2012 IEEE, pp. 497–502 (2012)

    Google Scholar 

  73. Petrovskaya, A., Khatib, O.: Global localization of objects via touch. IEEE Trans. Rob. 27(3), 569–585 (2011)

    Article  Google Scholar 

  74. Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.D.: Tactile-object recognition from appearance information. IEEE Trans. Rob. 27(3), 473–487 (2011)

    Article  Google Scholar 

  75. Pinto, L., Gupta, A.: Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 3406–3413. IEEE (2016)

    Google Scholar 

  76. Prats, M., Sanz, P.J., Del Pobil, A.P.: Vision-tactile-force integration and robot physical interaction. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pp. 3975–3980 (2009)

    Google Scholar 

  77. Roberge, J.P., Rispal, S., Wong, T., Duchaine, V.: Unsupervised feature learning for classifying dynamic tactile events using sparse coding. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 2675–2681. IEEE (2016)

    Google Scholar 

  78. Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Robot. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  79. Romano, J.M., Kuchenbecker, K.J.: Methods for robotic tool-mediated haptic surface recognition. In: Haptics Symposium (HAPTICS), 2014 IEEE, pp. 49–56 (2014)

    Google Scholar 

  80. Russell, R.A., Wijaya, J.A.: Object location and recognition using whisker sensors. In: Australasian Conference on Robotics and Automation, pp. 761–768 (2003)

    Google Scholar 

  81. Schmitz, A., Bansho, Y., Noda, K., Iwata, H., Ogata, T., Sugano, S.: Tactile object recognition using deep learning and dropout. In: Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on, pp. 1044–1050 (2014)

    Google Scholar 

  82. Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 243–248 (2009)

    Google Scholar 

  83. Sinapov, J., Sukhoy, V., Sahai, R., Stoytchev, A.: Vibrotactile recognition and categorization of surfaces by a humanoid robot. IEEE Trans. Robot. 27(3), 488–497 (2011)

    Article  Google Scholar 

  84. Soh, H., Demiris, Y.: Incrementally learning objects by touch: Online discriminative and generative models for tactile-based recognition. IEEE Trans. Haptics 7(4), 512–525 (2014)

    Article  Google Scholar 

  85. Son, J.S., Howe, R., Wang, J., Hager, G.D.: Preliminary results on grasping with vision and touch. In: Intelligent Robots and Systems’96, IROS96, Proceedings of the 1996 IEEE/RSJ International Conference on, vol. 3, pp. 1068–1075 (1996)

    Google Scholar 

  86. Song, D., Ek, C.H., Huebner, K., Kragic, D.: Task-based robot grasp planning using probabilistic inference. IEEE Trans. Robot. 31(3), 546–561 (2015)

    Article  Google Scholar 

  87. Spiers, A.J., Liarokapis, M.V., Calli, B., Dollar, A.M.: Single-grasp object classification and feature extraction with simple robot hands and tactile sensors. IEEE Trans. Haptics 9(2), 207–220 (2016)

    Article  Google Scholar 

  88. Strese, M., Lee, J.Y., Schuwerk, C., Han, Q., Kim, H.G., Steinbach, E.: A haptic texture database for tool-mediated texture recognition and classification. In: Haptic, Audio and Visual Environments and Games (HAVE), 2014 IEEE International Symposium on, pp. 118–123 (2014)

    Google Scholar 

  89. Strese, M., Schuwerk, C., Iepure, A., Steinbach, E.: Multimodal feature-based surface material classification. IEEE Trans, Haptics (2017)

    Google Scholar 

  90. Sun, F., Liu, C., Huang, W., Zhang, J.: Object classification and grasp planning using visual and tactile sensing. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 969–979 (2016)

    Article  Google Scholar 

  91. Taira, R., Saga, S., Okatani, T., Deguchi, K.: 3d reconstruction of reflective surface on reflection type tactile sensor using constraints of geometrical optics. In: SICE Annual Conference 2010, Proceedings of, pp. 3144–3149 (2010)

    Google Scholar 

  92. Wan, Q., Adams, R.P., Howe, R.D.: Variability and predictability in tactile sensing during grasping. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 158–164. IEEE (2016)

    Google Scholar 

  93. Westling, G., Johansson, R.: Factors influencing the force control during precision grip. Exp. Brain Res. 53(2), 277–284 (1984)

    Article  Google Scholar 

  94. Woods, A.T., Newell, F.N.: Visual, haptic and cross-modal recognition of objects and scenes. J. Physiol. Paris 98(1), 147–159 (2004)

    Article  Google Scholar 

  95. Xu, D., Loeb, G.E., Fishel, J.A.: Tactile identification of objects using bayesian exploration. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 3056–3061 (2013)

    Google Scholar 

  96. Yuan, W., Wang, S., Dong, S., Adelson, E.: Connecting look and feel: associating the visual and tactile properties of physical materials (2017). arXiv:1704.03822

  97. Zhang, M.M., Atanasov, N., Daniilidis, K.: Active tactile object recognition by monte carlo tree search (2017). arXiv:1703.00095

  98. Zhang, M.M., Detry, R., Larry, M., Kostas, D.: Tactile-vision integration for task-compatible fine-part manipulation. In: Robotics: Science and Systems (RSS) Workshop on Revisiting Contact C Turning a Problem into a Solution (2017)

    Google Scholar 

  99. Zhang, M.M., Kennedy, M.D., Hsieh, M.A., Daniilidis, K.: A triangle histogram for object classification by tactile sensing. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pp. 4931–4938. IEEE (2016)

    Google Scholar 

  100. Zhang, Y.F., Liu, H.: Tactile sensor based varying contact point manipulation strategy for dexterous robot hand manipulating unknown objects. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 4756–4761 (2012)

    Google Scholar 

  101. Zheng, H., Fang, L., Ji, M., Strese, M., Özer, Y., Steinbach, E.: Deep learning for surface material classification using haptic and visual information. IEEE Trans. Multimed. 18(12), 2407–2416 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Sun, F. (2018). Introduction. In: Robotic Tactile Perception and Understanding. Springer, Singapore. https://doi.org/10.1007/978-981-10-6171-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6171-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6170-7

  • Online ISBN: 978-981-10-6171-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics