Frequency-Modulation Atomic Force Microscopy

  • Masayuki AbeEmail author


Frequency-Modulation atomic force microscopy (FM-AFM), one of the AFM modes, can image surface single atoms and molecules. Different from scanning tunneling microscopy (STM) that has also atomic resolution, FM-AFM can be operated on the insulator surface. Force spectroscopy using FM-AFM measures chemical bonding force between atoms of the AFM tip and sample surface.


Force Cantilever FM Atomic resolution 


  1. 1.
    Morita, S., Wiesendanger, R., Meyer, E. (eds.): Noncontact atomic force microscopy. Springer-Verlag (2002)Google Scholar
  2. 2.
    Morita, S., Giessibl, F.J., Wiesendanger, R.(eds.): Noncontact atomic force microscopy, vol. 2, Springer-Verlag (2009)Google Scholar
  3. 3.
    Morita, S. Giessibl, F.J., Meyer, E., Wiesendanger, R.(eds.): Noncontact atomic force microscopy, vol. 3, Springer-Verlag (2015)Google Scholar
  4. 4.
    Giessibl, F.J.: Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997)CrossRefGoogle Scholar
  5. 5.
    Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., Yamada, H.: Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev. Sci. Ins. 76, 053704-1/-8 (2005)Google Scholar
  6. 6.
    Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)CrossRefGoogle Scholar
  7. 7.
    Gross, L., Mohn, F., Moll, N., Liljeroth, P., Meyer, G.: The chemical structure of a molecule resolved by atomic force. Microscopy 325, 1110–1114 (2009)Google Scholar
  8. 8.
    Hämäläinen, S.K., Heijden, N., Lit, J., Hartog, S., Liljeroth, P., Swart, I.: Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev.lett. 113(18), 186102-1/-4 (2014)CrossRefGoogle Scholar
  9. 9.
    Asakawa, H., Yoshioka, S., Nishimura, K., Fukuma, T.: Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force. Microscopy 6, 9013–9020 (2012)Google Scholar
  10. 10.
    Lantz, M.A., Hug, H.J., Hoffmann, R., Schendel, P.J.A., Kappenberger, P., Martin, S., Baratoff, A., Güntherodt, H.-J.: Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001)CrossRefGoogle Scholar
  11. 11.
    Sugimoto, Y., Namikawa, T., Miki, K., Abe, M., Morita, S.: Vertical and lateral force mapping on the Si (111)−(7×7) surface by dynamic force microscopy. Phys. Rev. B 77(19), 195424-1/-9 (2008)CrossRefGoogle Scholar
  12. 12.
    Abe, M., Sugimoto, Y., Custance, O., Morita, S.: Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. App. Phys. Lett. 87(17), 173503-1/-9 (2005)CrossRefGoogle Scholar
  13. 13.
    Abe, M., Sugimoto, Y., Namikawa, T., Morita, K., Oyabu, N., Morita, S.: Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl. Phys. Lett. 90(20), 203103-1/-3 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of Engineering ScienceCenter for Science and Technology Under Extreme Conditions, Osaka UniversityOsakaJapan

Personalised recommendations