Electrochemical X-Ray Photoelectron Spectroscopy

  • Takuya MasudaEmail author


Although X-ray photoelectron spectroscopy (XPS) requires a vacuum (Chap.  132 X-ray Photoelectron Spectroscopy), in situ electrochemical (EC-) XPS has been a long-standing dream not only for fundamental science, but also for a wide range of applications including fuel cells, rechargeable batteries, photocatalysts, and biological processes. In the present chapter, various in situ EC-XPS systems are introduced.


Electrochemistry Solid/liquid interfaces In situ X-ray photoelectron spectroscopy 


  1. 1.
    Lovelock, K.R.J., Villar-Garcia, I.J., Maier, F., Steinruck, H.P., Licence, P.: Photoelectron spectroscopy of ionic liquid-based interfaces. Chem. Rev. 110, 5158–5190 (2010)CrossRefGoogle Scholar
  2. 2.
    Axnanda, S., Crumlin, E.J., Mao, B.H., Rani, S., Chang, R., Karlsson, P.G., Edwards, M.O.M., Lundqvist, M., Moberg, R., Ross, P., Hussain, Z., Liu, Z.: Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015)CrossRefGoogle Scholar
  3. 3.
    Karslioglu, O., Nemsak, S., Zegkinoglou, I., Shavorskiy, A., Hartl, M., Salmassi, F., Gullikson, E.M., Ng, M.L., Rameshan, C., Rude, B., Bianculli, D., Cordones, A.A., Axnanda, S., Crumlin, E.J., Ross, P.N., Schneider, C.M., Hussain, Z., Liu, Z., Fadley, C.S., Bluhm, H.: Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discuss. 180, 35–53 (2015)CrossRefGoogle Scholar
  4. 4.
    Masuda, T., Yoshikawa, H., Noguchi, H., Kawasaki, T., Kobata, M., Kobayashi, K., Uosaki, K.: In situ X-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents. Appl. Phys. Lett. 103, 111605 (2013)CrossRefGoogle Scholar
  5. 5.
    Velasco-Velez, J.J., Pfeifer, V., Havecker, M., Weatherup, R.S., Arrigo, R., Chuang, C.H., Stotz, E., Weinberg, G., Salmeron, M., Schlogl, R., Knop-Gericke, A.: Photoelectron spectroscopy at the graphene-liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew. Chem. Int. Ed. 54, 14554–14558 (2015)CrossRefGoogle Scholar
  6. 6.
    Ogletree, D.F., Bluhm, H., Lebedev, G., Fadley, C.S., Hussain, Z., Salmeron, M.: A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev. Sci. Instrum. 73, 3872–3877 (2002)CrossRefGoogle Scholar
  7. 7.
    Salmeron, M., Schlogl, R.: Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008)CrossRefGoogle Scholar
  8. 8.
    Taylor, A.W., Qiu, F.L., Villar-Garcia, I.J., Licence, P.: Spectroelectrochemistry at ultrahigh vacuum: in situ monitoring of electrochemically generated species by X-ray photoelectron spectroscopy. Chem. Commun. 5817–5819 (2009)Google Scholar
  9. 9.
    Qiu, F.L., Taylor, A.W., Men, S., Villar-Garcia, I.J., Licence, P.: An ultra high vacuum-spectroelectrochemical study of the dissolution of copper in the ionic liquid (N-methylacetate)-4-picolinium bis(trifluoromethylsulfonyl)imide. Phys. Chem. Chem. Phys. 12, 1982–1990 (2010)CrossRefGoogle Scholar
  10. 10.
    Wibowo, R., Aldous, L., Jacobs, R.M.J., Manan, N.S.A., Compton, R.G.: In situ electrochemical-X-ray photoelectron spectroscopy: rubidium metal deposition from an ionic liquid in competition with solvent breakdown. Chem. Phys. Lett. 517, 103–107 (2011)CrossRefGoogle Scholar
  11. 11.
    Favaro, M., Jeong, B., Ross, P.N., Yano, J., Hussain, Z., Liu, Z., Crumlin, E.J.: Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Research Center for Advanced Measurement and CharacterizationNational Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations